Search results for "boundary layer"
showing 10 items of 162 documents
The making of the New European Wind Atlas - Part 1: Model sensitivity
2020
This is the first of two papers that document the creation of the New European Wind Atlas (NEWA). It describes the sensitivity analysis and evaluation procedures that formed the basis for choosing the final setup of the mesoscale model simulations of the wind atlas. The suitable combination of model setup and parameterizations, bound by practical constraints, was found for simulating the climatology of the wind field at turbine-relevant heights with the Weather Research and Forecasting (WRF) model. Initial WRF model sensitivity experiments compared the wind climate generated by using two commonly used planetary boundary layer schemes and were carried out over several regions in Europe. They…
On the occurrence of strong vertical wind shear in the tropopause region: a 10-year ERA5 northern hemispheric study
2021
A climatology of the occurrence of strong wind shear in the upper troposphere–lower stratosphere (UTLS) is presented, which gives rise to defining a tropopause shear layer (TSL). Strong wind shear in the tropopause region is of interest because it can generate turbulence, which can lead to cross-tropopause mixing. The analysis is based on 10 years of daily northern hemispheric ECMWF ERA5 reanalysis data. The vertical extent of the region analyzed is limited to the altitudes from 1.5 km above the surface up to 25 km, to exclude the planetary boundary layer as well as strong wind shear in higher atmospheric layers like the mesosphere–lower thermosphere. A threshold value of St2=4×10-4s-2 of t…
Estimation of evapotranspiration using SVAT models and surface IR temperature
1995
Soil Vegetation Atmosphere Transfer (SVAT) models have been implemented to estimate energy and mass fluxes between soil, vegetation and atmosphere of various ecosystems. They can also simulate remote sensing data and in particular thermal infrared surface temperature. Usually, these models are simple, but they use realistic descriptions of radiative, turbulent and water transfers. These include description of stomatal control of transpiration fluxes. Some studies have shown that such models may be used to derive evapotranspiration from surface temperature, using inversion procedures. In this study, inversion of two different SVAT models are compared.
Summertime observations of ultrafine particles and cloud condensation nuclei from the boundary layer to the free troposphere in the Arctic
2016
Abstract. The Arctic is extremely sensitive to climate change. Shrinking sea ice extent increases the area covered by open ocean during Arctic summer, which impacts the surface albedo and aerosol and cloud properties among many things. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) were made during 11 flights of the NETCARE July, 2014 airborne campaign conducted from Resolute Bay, Nunavut (74N, 94W). Flights routinely included vertical profiles from about 60 to 3000 m a.g.l. as well as several low-level horizontal transects over open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vert…
Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations
2012
Abstract The two-source energy balance (TSEB) model uses remotely sensed maps of land–surface temperature (LST) along with local air temperature estimates at a nominal blending height to model heat and water fluxes across a landscape, partitioned between dual sources of canopy and soil. For operational implementation of TSEB, however, it is often difficult to obtain representative air temperature data that are compatible with the LST retrievals, which may themselves have residual errors due to atmospheric and emissivity corrections. To address this issue, two different strategies in applying the TSEB model without requiring local air temperature data were tested over a typical Mediterranean…
Aerosol Lidar Intercomparison in the Framework of SPALINET—The Spanish Lidar Network: Methodology and Results
2009
Abstract—A group of eight Spanish lidars was formed in order to extend the European Aerosol Research Lidar Network–Advanced Sustainable Observation System (EARLINET-ASOS)project. This study presents intercomparisons at the hardware and software levels. Results of the system intercomparisons are based on range-square-corrected signals in cases where the lidars viewed the same atmospheres. Comparisons were also made for aeros backscatter coefficients at 1064 nm (2 systems) and 532 nm (all systems), and for extinction coefficients at 532 nm (2 systems). In total, three field campaigns were carried out between 2006 and 2007. Comparisons were limited to the highest layer found before the free tr…
Shock control bump design optimization on natural laminar aerofoil
2011
The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and inco…
Zero Viscosity Limit for Analytic Solutions of the Primitive Equations
2016
The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be \({O(\sqrt{\nu})}\). The main assumption is spatial analyticity of the initial datum.
Comparison of aerosol size distributions measured at ground level and calculated from inversion of solar radiances
2005
Ground-based sunphotometry measurements can be used to investigate atmospheric aerosol optical properties, such as the volume size distribution, an important parameter in the study of the effect of aerosol on atmospheric processes. Most inversion algorithms assume constant aerosol optical characteristics over the whole air column. In this work we present observational evidence of the limitations of this simplifying assumption in cases where the aerosol vertical structure is highly inhomogeneous. During the field campaign VELETA 2002, carried out in Granada (Spain), a quite complete characterization of the atmospheric aerosol was obtained by simultaneously measuring the columnar aerosol char…
Existence and Singularities for the Prandtl Boundary Layer Equations
2000
Prandtl's boundary layer equations, first formulated in 1904, resolve the differences between the viscous and inviscid description of fluid flows. This paper presents a review of mathematical results, both analytic and computational, on the unsteady boundary layer equations. This includes a review of the derivation and basic properties of the equations, singularity formation, well-posedness results, and infinite Reynolds number limits.