Search results for "buffer"
showing 10 items of 230 documents
Joint Power Allocation and Link Selection for Multi-Carrier Buffer Aided Relay Network
2019
In this paper, we present a joint power allocation and adaptive link selection protocol for an orthogonal frequency division multiplexing (OFDM)-based network consists of one source node i.e., base station (BS), one destination node i.e., (MU) and a buffer aided decode and forward (DF) relay node. Our objective is to maximize the average throughput of the system via power loading over different subcarriers at source and relay nodes. A separate power budget is assumed at each transmitting node to make the system more practical. In order to form our solution more tractable, a decomposition framework is implemented to solve the mixed integer optimization problem. Further, less complex suboptim…
Iontophoretic Transdermal Delivery of Sumatriptan: Effect of Current Density and Ionic Strength
2005
ABSTRACT: Iontophoretic transdermal delivery of sumatriptan was investigated in vitro . Among the conditions tested, 0.25 mA/cm 2 and low ionic strength (NaCl 25 mM) was the best experimental condition to increase its transport across the skin. The flux increased 385-fold respective to passive diffusion, thus resulting in a transdermal flux of sumatriptan of 1273 ± 83 nmol/cm 2 h. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association
A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time
2010
Redox melting refers to any process by which melt is generated by the contact of a rock with a fluid or melt with a contrasting oxidation state. It was originally applied to melting owing to the oxidation of reduced CH4and H2-bearing fluids in contact with more oxidized blocks in the mantle, particularly recycled crustal blocks.This oxidation mechanism causes an increase in the activity of H2O by the reaction of CH4 with O2, and the increased aH2O causes a rapid drop in the solidus temperature, and is here termed hydrous redox melting (HRM). Recently, a second redox melting mechanism (carbonate redox melting; CRM) has been discovered that operates in more oxidized conditions, and may post-d…
Bestimmung der Eiweissbindung von Pharmaka in bikarbonatgepufferten Lösungen
1970
A gel filtration method is described for quantitative estimation of protein binding of drugs at 37 °C and pH 7.4 in solutions containing bicarbonate buffer.
Structural characterization of a-plane Zn1−xCdxO (0 < x <0.085) thin films grown by metal-organic vapor phase epitaxy.
2006
Zn1−xCdxO(11math0) films have been grown on (01math2) sapphire (r–plane) substrates by metal-organic vapor phase epitaxy. A 800-nm-thick ZnO buffer, deposited prior to the alloy growth, helps to prevent the formation of pure CdO. A maximum uniform Cd incorporation of 8.5 at. % has been determined by Rutherford backscattering spectrometry. Higher Cd contents lead to the coexistence of Zn1−xCdxO alloys of different compositions within the same film. The near band-edge photoluminescence emission shifts gradually to lower energies as Cd is incorporated and reaches 2.93 eV for the highest Cd concentration (8.5 at. %). The lattice deformation, due to Cd incorporation, has been described using a n…
From local measures to regional impacts: Modelling changes in nutrient loads to the Baltic Sea
2021
Study Region: Our study region is the Baltic Sea Drainage Basin (BSDB), which covers an area of 1.8 Mio km2 distributed over 14 countries in northern Europe. Study Focus: We use a large-scale hydrological and nutrient transport model (E-HYPE) to model basin-wide impacts of measure scenarios on the Baltic Sea, where eutrophication is a critical issue for the marine ecosystem. We constructed measure scenarios based on stakeholder acceptance, established in workshops in different regions around the Baltic. These measures include local stream reach to catchment scale measures aiming to reduce nutrient transport into the stream network (buffer strips, stormwater ponds) and measures aiming to red…
Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms
2014
We present a spectroscopic method for mapping two-dimensional distributions of magnetic field strengths (magnetic scalar potential lines) using charge-coupled device (CCD) recordings of the fluorescence patterns emitted by spin-polarized Cs vapour in a buffer gas exposed to inhomogeneous magnetic fields. The method relies on the position-selective destruction of spin polarization by magnetic resonances induced by multi-component oscillating magnetic fields, such that magnetic potential lines can be directly detected by the CCD camera. We also present a generic algebraic model allowing for the calculation of the fluorescence patterns and find excellent agreement with the experimental observa…
Ion beam coolers in nuclear physics
2003
Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a …
Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps
2015
Abstract Laser spectroscopic methods are reviewed which are of potential interest for the investigation of atomic and ionic level structures of superheavy elements. The latter are defined here as the trans-fermium elements with Z > 100 for which no experimental atomic or ionic level structure information is known so far, and which cannot be bred in high flux nuclear power reactors via successive neutron capture. The principles of suitable laser spectroscopic methods are described, and illustrated by examples of real experiments. The addressed methods include single-ion spectroscopy in Paul traps, laser-induced fluorescence spectroscopy (LIF), radiation-detected optical pumping (RADOP), radi…
Precise determination of the171Yb+ ground state Hyperfine separation
1983
We performed a microwave-optical double resonance experiment on the ground state of171Yb+ ions. About 105 particles were confined in a r.f. quadrupole trap for periods of several hours in the presence of He buffer gas. Hyperfine pumping by a pulsed dye laser was followed by microwave transitions, which we observed via changes in the ionic fluorescence intensity. The ground state hyperfine splitting has been determined togD W=12642812124.2±1.4 Hz. The ultimate line width obtained in this experiment was 33 mHz, corresponding to a lineQ of 3.8·1011. The final error ofgD W is mainly determined by the accuracy of the available frequency reference.