Search results for "calorimeter"

showing 10 items of 197 documents

Searching for New Physics in two-neutrino double beta decay with CUPID

2021

Abstract In the past few years, attention has been drawn to the fact that a precision analysis of two-neutrino double beta decay (2υββ) allows the study of interesting physics cases like the emission of Majoron bosons and possible Lorentz symmetry violation. These processes modify the summed-energy distribution of the two electrons emitted in 2υββ. CUPID is a next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals, operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2υββ and the large exposure that can be reached by CUPID, we expect to measure with very high precision the 100Mo 2υββ spectrum shape, reaching great sensitivities…

CUPID Neutrinoless Double Beta Decay LNGS Particle Physics Neutrino Majorana NeutrinoHistoryLNGS[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikkaNeutrinoless Double Beta DecayEducationcrystalCUPIDNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]double-beta decay: (2neutrino)Particle Physicsscintillation countersymmetry: violationbackgroundnew physics: search forMajorana Neutrinoneutriinotsensitivityviolation: LorentzMajoronComputer Science Applicationscalorimeter: cryogenicselectron: energy spectrumsymmetry: Lorentzydinfysiikka
researchProduct

The TileCal Optical Multiplexer Board 9U

2011

Abstract TileCal is the hadronic calorimeter of the ATLAS experiment at LHC/CERN. The system contains roughly 10,000 channels of read-out electronics, whose signals are gathered and digitized in the front-end electronics and then transmitted to the counting room through two redundant optical links. Then, the data is received in the back-end system by the Optical Multiplexer Board (OMB) 9U which performs a CRC check to the redundant data to avoid Single Event Upsets errors. A real-time decision is taken on the event-to-event basis to transmit single data to the Read-Out Drivers (RODs) for processing. Due to the low dose level expected during the first years of operations in ATLAS it was deci…

CalorimeterLarge Hadron Colliderbusiness.industryComputer scienceDetectorATLAS experimentPhysics and Astronomy(all)ATLASMultiplexerCRCData acquisitionSoftwareCyclic redundancy checkLHCElectronicsDetectors and Experimental TechniquesbusinessSingle Event UpsetsFPGAComputer hardwarePhysics Procedia
researchProduct

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

2018

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the…

Cherenkov Telescope ArrayHigh-energy astrophysical phenomenaCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomyenergy resolution7. Clean energy01 natural sciencesSpace missionlaw.inventionIceCubeEinstein TelescopelawObservatoryLIGO010303 astronomy & astrophysicsKM3NeTPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Applied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionGamma-ray astronomyGamma-ray polarizationCondensed Matter Physicsphoton: energyobservatoryNuclear astrophysicsApace missionAstrophysics - High Energy Astrophysical Phenomenaperformancedetector: technologyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstspace missionCompton and pair creation telescopeTelescope0103 physical sciencessupernovaElectroniccalorimetergamma ray: detectorOptical and Magnetic MaterialsKAGRAElectrical and Electronic Engineering010306 general physicsTime domain astronomyLISAGamma-ray astronomyEinstein TelescopeAstronomyInstitut für Physik und AstronomieTime-domain astronomyCherenkov Telescope ArraysensitivityLIGOmessengerKM3NeTVIRGO13. Climate actionCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineeringddc:520galaxyCompton and pair creation telescope; Gamma-ray astronomy; gamma-ray polarization; high-energy astrophysical phenomena; space mission; time-domain astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic Engineering[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA

2014

ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…

CryostatCosmic VisionVisionShieldsX-ray telescopeGrazing incidencelaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawX-raysElectronicmicro-calorimeterOptical and Magnetic MaterialsElectrical and Electronic EngineeringX-ray telescopesPhysicsX-IFUSpatial resolutionSounding rocketEquipment and servicesbusiness.industrySensorsApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOptical Blocking FiltersComputer Science Applications1707 Computer Vision and Pattern RecognitionDetector arraysCondensed Matter PhysicsATHENAmissionsCultural heritageTransition edge sensorbusinessATHENA; micro-calorimeter; missions; Optical Blocking Filters; X-IFU; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTelescopes
researchProduct

Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

2006

The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

CryostatPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderCalorimeter (particle physics)Physics::Instrumentation and Detectors010308 nuclear & particles physicsBarrel (horology)Mechanical engineeringCryogenics01 natural sciencesNuclear physicsElectromagnetic calorimetermedicine.anatomical_structureAtlas (anatomy)0103 physical sciencesQualification testing[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]medicinePhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsInstrumentationParticle Physics - ExperimentNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

2016

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…

CryostatPhysics::Instrumentation and DetectorsAperture01 natural sciencesfrequency division multiplexingfocal plane assemblySettore FIS/05 - Astronomia E AstrofisicaOpticsSensor array0103 physical sciencesElectronicSQUID amplifierAthenaOptical and Magnetic MaterialsElectrical and Electronic Engineeringta216010306 general physicsta113010302 applied physicsPhysicsX-IFUta114ta213business.industryStray lightApplied Mathematicstransition edge sensorDetectorAstrophysics::Instrumentation and Methods for AstrophysicsX-ray microcalorimeterComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCardinal pointElectromagnetic shieldingcryogenic anti-coincidence detectorX-ray microcalorimeter transition edge sensor cryogenic anti-coincidence detector SQUID amplifier frequency division multiplexing Athena X-IFU focal plane assemblyTransition edge sensorbusinessAthena; cryogenic anti-coincidence detector; focal plane assembly; frequency division multiplexing; SQUID amplifier; transition edge sensor; X-IFU; X-ray microcalorimeter; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSPIE Proceedings
researchProduct

The ATLAS Level-1 Calorimeter Trigger

2008

The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, tau leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 microsecond, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

Digital electronicsPhysicsLarge Hadron ColliderPhysics::Instrumentation and Detectorsbusiness.industryElectrical engineeringIntegrated circuitlaw.inventionCalorimetermedicine.anatomical_structureData acquisitionAtlas (anatomy)lawControl systemmedicineHigh Energy Physics::ExperimentElectronicsDetectors and Experimental TechniquesbusinessInstrumentationMathematical PhysicsJournal of Instrumentation
researchProduct

Muon identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 trigger purposes

2008

The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online …

Digital signal processorCalorimeter (particle physics)Physics::Instrumentation and Detectorsbusiness.industryComputer scienceATLAS experimentDetectorData acquisitionTransmission (telecommunications)High Energy Physics::ExperimentElectronicsDetectors and Experimental TechniquesbusinessComputer hardwareDigital signal processing2008 IEEE Nuclear Science Symposium Conference Record
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

2010

The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29-0.04+0.05)% in the barrel and (0.54-0.04+0.06)% in the endcaps. The same data are used to measure the drift velocity of ionization electrons …

Drift velocityPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsInstrumentationFOS: Physical sciencesddc:500.2ElectronAstrophysics::Cosmology and Extragalactic AstrophysicsElectromagnetic CalorimeterATLAS; Drift Time Measurement; Cosmic Muons5307. Clean energy01 natural sciencesPartícules (Física nuclear)High Energy Physics - Experiment010305 fluids & plasmasNuclear physicsHigh Energy Physics - Experiment (hep-ex)Atlas (anatomy)Ionization0103 physical sciencesmedicineFysikddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic MuonsDetectors and Experimental Techniques010306 general physicsEngineering (miscellaneous)Ciencias ExactasDetectors de radiacióPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsAcceleradors de partículesResolution (electron density)Instrumentation and Detectors (physics.ins-det)ATLASliquid argonElectromagnetic calorimetermedicine.anatomical_structureExperimental High Energy PhysicsDrift Time MeasurementPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentLHC
researchProduct