Search results for "cardinality"
showing 10 items of 42 documents
A Novel Border Identification Algorithm Based on an “Anti-Bayesian” Paradigm
2013
Published version of a chapter in the book: Computer Analysis of Images and Patterns. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-40261-6_23 Border Identification (BI) algorithms, a subset of Prototype Reduction Schemes (PRS) aim to reduce the number of training vectors so that the reduced set (the border set) contains only those patterns which lie near the border of the classes, and have sufficient information to perform a meaningful classification. However, one can see that the true border patterns (“near” border) are not able to perform the task independently as they are not able to always distinguish the testing samples. Thus, researchers have worked on thi…
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
Cardinal estimates involving the weak Lindelöf game
2021
AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…
Cardinal invariants of cellular Lindelof spaces
2018
A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…
Discovering representative models in large time series databases
2004
The discovery of frequently occurring patterns in a time series could be important in several application contexts. As an example, the analysis of frequent patterns in biomedical observations could allow to perform diagnosis and/or prognosis. Moreover, the efficient discovery of frequent patterns may play an important role in several data mining tasks such as association rule discovery, clustering and classification. However, in order to identify interesting repetitions, it is necessary to allow errors in the matching patterns; in this context, it is difficult to select one pattern particularly suited to represent the set of similar ones, whereas modelling this set with a single model could…
Cardinal inequalities involving the Hausdorff pseudocharacter
2023
We establish several bounds on the cardinality of a topological space involving the Hausdorff pseudocharacter $H\psi(X)$. This invariant has the property $\psi_c(X)\leq H\psi(X)\leq\chi(X)$ for a Hausdorff space $X$. We show the cardinality of a Hausdorff space $X$ is bounded by $2^{pwL_c(X)H\psi(X)}$, where $pwL_c(X)\leq L(X)$ and $pwL_c(X)\leq c(X)$. This generalizes results of Bella and Spadaro, as well as Hodel. We show additionally that if $X$ is a Hausdorff linearly Lindel\"of space such that $H\psi(X)=\omega$, then $|X|\le 2^\omega$, under the assumption that either $2^{<\mathfrak{c}}=\mathfrak{c}$ or $\mathfrak{c}<\aleph_\omega$. The following game-theoretic result is shown: i…
Maximum weight relaxed cliques and Russian Doll Search revisited
2015
Trukhanov et al. [Trukhanov S, Balasubramaniam C, Balasundaram B, Butenko S (2013) Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations. Comp. Opt. and Appl., 56(1), 113–130] used the Russian Doll Search (RDS) principle to effectively find maximum hereditary structures in graphs. Prominent examples of such hereditary structures are cliques and some clique relaxations intensely discussed and studied in network analysis. The effectiveness of the tailored RDS by Trukhanov et al. for s-plex and s-defective clique can be attributed to their cleverly designed incremental verification procedures used to distinguish feasible from infeasible struct…
Deuring’s mass formula of a Mumford family
2015
We study the Newton polygon jumping locus of a Mumford family in char p p . Our main result says that, under a mild assumption on p p , the jumping locus consists of only supersingular points and its cardinality is equal to ( p r − 1 ) ( g − 1 ) (p^r-1)(g-1) , where r r is the degree of the defining field of the base curve of a Mumford family in char p p and g g is the genus of the curve. The underlying technique is the p p -adic Hodge theory.
On a Linear Diophantine Problem of Frobenius: Extending the Basis
1998
LetXk={a1, a2, …, ak},k>1, be a subset of N such that gcd(Xk)=1. We shall say that a natural numbernisdependent(onXk) if there are nonnegative integersxisuch thatnhas a representationn=∑ki=1 xiai, elseindependent. The Frobenius numberg(Xk) ofXkis the greatest integer withnosuch representation. Selmer has raised the problem of extendingXkwithout changing the value ofg. He showed that under certain conditions it is possible to add an elementc=a+kdto the arithmetic sequencea,a+d,a+2d, …, a+(k−1) d, gcd(a, d)=1, without alteringg. In this paper, we give the setCof all independent numberscsatisfyingg(A, c)=g(A), whereAcontains the elements of the arithmetic sequence. Moreover, ifa>kthen we give …
Blocking sets and partial spreads in finite projective spaces
1980
A t-blocking set in the finite projective space PG(d, q) with d≥t+1 is a set $$\mathfrak{B}$$ of points such that any (d−t)-dimensional subspace is incident with a point of $$\mathfrak{B}$$ and no t-dimensional subspace is contained in $$\mathfrak{B}$$ . It is shown that | $$\mathfrak{B}$$ |≥q t +...+1+q t−1√q and the examples of minimal cardinality are characterized. Using this result it is possible to prove upper and lower bounds for the cardinality of partial t-spreads in PG(d, q). Finally, examples of blocking sets and maximal partial spreads are given.