Search results for "cell migration"
showing 10 items of 128 documents
Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts
2012
Radiation therapy is a part of the standard treatment for brain tumor patients, often resulting in irreversible neuropsychological deficits. These deficits may be due to permanent damage to the neural stem cell (NSC) niche, damage to local neural progenitors, or neurotoxicity. Using a computed tomography-guided localized radiation technique, we studied the effects of radiation on NSC proliferation and neuroblast migration in the mouse brain. Localized irradiation of the subventricular zone (SVZ) eliminated the proliferating neural precursor cells and migrating neuroblasts. After irradiation, type B cells in the SVZ lacked the ability to generate migrating neuroblasts. Neuroblasts from the u…
UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling.
2003
0012-1606 doi: DOI: 10.1016/S0012-1606(03)00014-9; The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecu…
Scaffolds based on hyaluronan crosslinked with a polyaminoacid: Novel candidates for tissue engineering application
2008
New porous scaffolds, with a suitable hydrolytic and enzymatic degradation, useful for tissue engineering applications have been obtained by a carbodiimide mediated reaction between hyaluronan (HA) and a synthetic polymer with a polyaminoacid structure such as α,β-polyaspartylhydrazide (PAHy). Scaffolds with a different molar ratio between PAHy repeating units and HA repeating units have been prepared and characterized from a chemical and physicochemical point of view. Tests of indirect and direct cytotoxicity, cell adhesion, and spreading on these biomaterials have been performed by using murine L929 fibroblasts. The new biomaterials showed a good cell compatibility and ability to allow ce…
1,2,4-Oxadiazole Topsentin Analogs with Antiproliferative Activity against Pancreatic Cancer Cells, Targeting GSK3β Kinase.
2021
A new series of topsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,2,4- oxadiazole moiety, was efficiently synthesized. All derivatives were pre-screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. The five most potent compounds were further investigated in various pancreatic ductal adenocarcinoma (PDAC) cell lines, including SUIT-2, Capan-1, and Panc-1 cells, eliciting EC50 values in the micromolar and sub-micromolar range, associated with significant reduction of cell migration. These remarkable results might be explained by the effects of these new topsentin analogues on epithelial-to-mesenchy…
2014
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Pur…
Identity, origin, and migration of peripheral glial cells in the Drosophila embryo.
2008
Glial cells are crucial for the proper development and function of the nervous system. In the Drosophila embryo, the glial cells of the peripheral nervous system are generated both by central neuroblasts and sensory organ precursors. Most peripheral glial cells need to migrate along axonal projections of motor and sensory neurons to reach their final positions in the periphery. Here we studied the spatial and temporal pattern, the identity, the migration, and the origin of all peripheral glial cells in the truncal segments of wildtype embryos. The establishment of individual identities among these cells is reflected by the expression of a combinatorial code of molecular markers. This allows…
Netrins guide migration of distinct glial cells in the Drosophila embryo
2010
Development of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, which are also motile, are guided by similar cues to axons, and analysed the influence of Netrins and their receptors on glial cell migration during embryonic development. We show that in Netrin mutants, two distinct populations of glial cells are affected: longitudinal glia (LG) fail to migrate medially …
Myofibroblasts and increased angiogenesis contribute to periapical cystic injury containment and repair
2019
Background Myofibroblasts (MF) and angiogenesis are important factors in the development and expansion of cystic lesions, where these cells secrete growth factors and proteases, stimulating angiogenesis, matrix deposition and cell migration, affecting the growth of these periapicopathies. The present study aimed to evaluate the immunohistochemical expression of CD34 and α-SMA in radicular cysts (RC) and residual radicular cysts (RRC), with the purpose of contributing to a better understanding of the expansion and progression of these periapical lesions. Material and Methods The present study os a descriptive, quantitative and comparative analysis of positive CD34 and α-SMA immunohistochemic…
Extracellular calcium-sensing receptor mediates human bronchial epithelial wound repair
2010
The airway epithelium routinely undergoes damage that requires repair to restore epithelial barrier integrity. Cell migration followed by proliferation are necessary steps to achieve epithelial repair. Calcium-sensing receptor (CaSR) is implicated in cell migration and proliferation processes. Thus we hypothesized that CaSR mediates lung epithelial wound repair. We detected CaSR expression in human lung and in well-differentiated human bronchial epithelial cells (HBEC). To test the CaSR functionality, HBEC loaded with fura-2 were stimulated with extracellular Ca(2+) ([Ca(2+)](out)) which resulted in a concentration-dependent intracellular Ca(2+) ([Ca(2+)](i)) increase (potency approximately…
Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases
2007
For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time (similar to 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor…