Search results for "cells"

showing 10 items of 7920 documents

Dynamics and predicted drug response of a gene network linking dedifferentiation with β-catenin dysfunction in hepatocellular carcinoma

2019

Background & Aims Alterations of individual genes variably affect the development of hepatocellular carcinoma (HCC). Thus, we aimed to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRNs). Methods Using data from The Cancer Genome Atlas, from the LIRI-JP (Liver Cancer – RIKEN, JP project), and from our transcriptomic, transfection and mouse transgenic experiments, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of β-catenin (CTNNB1). We further generated and validated a quantitative mathematical model of the GRN using human cell lines and in vivo expression data. Results We found that LIN28B and C…

0301 basic medicineBeta-cateninCarcinoma HepatocellularHepatocellular carcinomaLIN28BCellGene regulatory networkPrincipal component analysisMice TransgenicBiologyTransfectionTranscriptomeCohort Studies03 medical and health sciencesMice0302 clinical medicineMathematical modelmicroRNAmedicineAnimalsHumansGene Regulatory NetworksCTNNB1Genebeta CateninHepatologySequence Analysis RNALiver NeoplasmsGene regulatory networkRNA-Binding ProteinsHGF/MET pathwayMicroRNAHep G2 CellsHCCSModels TheoreticalPrognosisPersonalized medicinedigestive system diseases030104 developmental biologymedicine.anatomical_structureCancer researchSMARCA4biology.protein030211 gastroenterology & hepatologyTranscriptome
researchProduct

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

2018

AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…

0301 basic medicineBioconversionchemistry.chemical_elementNanoparticlelcsh:MedicineOxyanion02 engineering and technologySettore BIO/19 - Microbiologia GeneraleArticleNanomaterialsSurface-Active Agent03 medical and health scienceschemistry.chemical_compoundSurface-Active AgentsRhodococcuslcsh:ScienceMultidisciplinaryNanotubesbiologyChemistrylcsh:RElectric Conductivitynanoparticles Rhodococcus aetherivorans tellurite resting cells021001 nanoscience & nanotechnologybiology.organism_classificationNanotube030104 developmental biologyChemical engineeringChemical stabilityNanorodlcsh:QTellurium0210 nano-technologyTelluriumRhodococcusRhodococcuScientific Reports
researchProduct

Dextran-based therapeutic nanoparticles for hepatic drug delivery.

2016

Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver. Materials & methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro. Empty and siRNA-carrying DNP were tested in vivo with regard to biodistribution and cellular uptake. Results: In vitro, DNP were taken up by cells of the myeloid lineage without compromising their viability. In vivo, empty and siRNA-carrying DNP distributed to the liver where a single treatment addressed approximately 70% of macrophages and dendritic cells. Serum parameters indicated no in vivo toxicity. Conclusion: DNP are multifunctional liver-s…

0301 basic medicineBiodistributionMaterials scienceCell SurvivalSurface PropertiesBiomedical EngineeringMedicine (miscellaneous)Antigens Differentiation Myelomonocyticchemical and pharmacologic phenomenaBioengineering02 engineering and technologyDevelopmentPharmacologyPolyethylene Glycols03 medical and health scienceschemistry.chemical_compoundMiceIn vivoAntigens CDAnimalsHumansGeneral Materials ScienceTissue DistributionParticle SizeRNA Small InterferingDrug CarriersMice Inbred BALB Corganic chemicalsMacrophageshemic and immune systemsDextransDendritic cell3T3 CellsDendritic Cells021001 nanoscience & nanotechnology030104 developmental biologyDextranRAW 264.7 CellschemistryLiverDrug deliveryToxicityPEGylationNanoparticles0210 nano-technologyDrug carrierNanomedicine (London, England)
researchProduct

Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles

2016

Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes…

0301 basic medicineBiodistributionMyeloidPolymersCellBiophysicsMice NudeCapsulesBioengineeringSpleen02 engineering and technologyFlow cytometryBiomaterialsMice03 medical and health sciencesNanocapsulesIn vivoMaterials TestingmedicineAnimalsMyeloid CellsTissue DistributionMolecular Targeted TherapyMicrobubblesmedicine.diagnostic_testbusiness.industryMacrophages021001 nanoscience & nanotechnology3. Good healthCell biologyVisceraNanomedicine030104 developmental biologymedicine.anatomical_structureOrgan SpecificityMechanics of Materials2023 OA procedureLiposomesImmunologyDrug deliveryCeramics and CompositesMicrobubblesTargeted delivery0210 nano-technologybusinessBiomaterials
researchProduct

Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis

2018

Summary Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional respons…

0301 basic medicineBiologiaBioenergeticsChop-10 ; Crls1 ; Beige Adipose ; Brown Adipose ; Cardiolipin ; Insulin Resistance ; Lipid Metabolism ; Mitochondria ; Phospholipids ; ThermogenesisPhysiologyGlucose uptakeAdipose tissueTransferases (Other Substituted Phosphate Groups)MitochondrionEnergy homeostasischemistry.chemical_compoundMice0302 clinical medicineAdipose Tissue Browninsulin resistancelipid metabolismCardiolipinAdipocytesCells CulturedThermogenesisthermogenesisCell biologyMitochondriamitochondriaCHOP-10lipids (amino acids peptides and proteins)BioquímicaCardiolipinsbeige adiposeArticle03 medical and health sciencesInsulin resistanceCRLS1medicineAnimalsHumansMolecular Biologyphospholipidsbrown adiposeMembrane ProteinsCell BiologyAdipose Tissue Beigemedicine.diseaseMice Inbred C57BL030104 developmental biologychemistrycardiolipinEnergy MetabolismThermogenesis030217 neurology & neurosurgery
researchProduct

Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability…

2017

This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction pro…

0301 basic medicineBiological AvailabilityAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyIsothiocyanatesChemical reductionOrganic chemistryHumansFood scienceEstrogens Non-SteroidalMycotoxinCytotoxicityZearalenonefood and beverages04 agricultural and veterinary sciencesGeneral MedicineMycotoxinsAllyl isothiocyanate040401 food scienceIn vitroBioavailability030104 developmental biologychemistryToxicityZearalenoneZeranolCaco-2 CellsFood ScienceFood chemistry
researchProduct

Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.

2016

et al.

0301 basic medicineBiologyEndothelial progenitor cellProgenitor cellsTissue‐Specific Stem CellsCell Line03 medical and health sciencesMiceFetusAntigens CDmedicineAnimalsNewborn transplantationProgenitor cellT-Cell Acute Lymphocytic Leukemia Protein 1Cell AggregationExtracellular Matrix ProteinsLiver cellEndothelial CellsCell BiologyCadherinsCell aggregation3. Good healthHematopoiesisEndothelial stem cellHaematopoiesisEndothelial reconstitutionFetal liver030104 developmental biologymedicine.anatomical_structureHematopoietic progenitorsLiverFetal liver ; Endothelial reconstitution ; Hematopoietic progenitors ; Progenitor cellsOrgan SpecificityImmunologyCancer researchMolecular MedicineBlood VesselsLeukocyte Common AntigensBone marrowStem cellDevelopmental Biology
researchProduct

GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

2017

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…

0301 basic medicineBiolääketieteet - Biomedicineneural networkstem cell derived neuronslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium imagingPremovement neuronal activityhuman pluripotent stem cellsInduced pluripotent stem celllcsh:Neurosciences. Biological psychiatry. Neuropsychiatrygap junctionsOriginal ResearchArtificial neural networkGABAA receptorChemistrymicroelectrode arrayGap junctionsynchronyDepolarizationMultielectrode arraycalcium imaging030104 developmental biologynervous systemexcitatory GABANeuroscienceNeurotieteet - Neurosciences030217 neurology & neurosurgeryNeuroscienceFrontiers in cellular neuroscience
researchProduct

Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications

2015

In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amp…

0301 basic medicineBiomedical TechnologyMitochondrionBiologyEndocytosisApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundAdenosine TriphosphateTissue engineeringPolyphosphatesExtracellularHumansBlood CellsPolyphosphateGeneral MedicineCell biologyMitochondriaMetabolic pathway030104 developmental biologychemistryBiochemistryMolecular MedicineNanoparticlesAdenosine triphosphateIntracellularMetabolic Networks and PathwaysBiotechnology Journal
researchProduct