Search results for "cells"
showing 10 items of 7920 documents
Dynamics and predicted drug response of a gene network linking dedifferentiation with β-catenin dysfunction in hepatocellular carcinoma
2019
Background & Aims Alterations of individual genes variably affect the development of hepatocellular carcinoma (HCC). Thus, we aimed to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRNs). Methods Using data from The Cancer Genome Atlas, from the LIRI-JP (Liver Cancer – RIKEN, JP project), and from our transcriptomic, transfection and mouse transgenic experiments, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of β-catenin (CTNNB1). We further generated and validated a quantitative mathematical model of the GRN using human cell lines and in vivo expression data. Results We found that LIN28B and C…
The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor
2021
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …
Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1
2018
AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…
Dextran-based therapeutic nanoparticles for hepatic drug delivery.
2016
Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver. Materials & methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro. Empty and siRNA-carrying DNP were tested in vivo with regard to biodistribution and cellular uptake. Results: In vitro, DNP were taken up by cells of the myeloid lineage without compromising their viability. In vivo, empty and siRNA-carrying DNP distributed to the liver where a single treatment addressed approximately 70% of macrophages and dendritic cells. Serum parameters indicated no in vivo toxicity. Conclusion: DNP are multifunctional liver-s…
Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles
2016
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes…
Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis
2018
Summary Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional respons…
Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability…
2017
This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction pro…
Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.
2016
et al.
GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.
2017
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…
Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications
2015
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amp…