Search results for "clusters"

showing 10 items of 1274 documents

A Scanning Electron Microscope for Ultracold Atoms

2006

We propose a new technique for the detection of single atoms in ultracold quantum gases. The technique is based on scanning electron microscopy and employs the electron impact ionization of trapped atoms with a focussed electron probe. Subsequent detection of the resulting ions allows for the reconstruction of the atoms position. This technique is expected to achieve a much better spatial resolution compared to any optical detection method. In combination with the sensitivity to single atoms, it makes new in situ measurements of atomic correlations possible. The detection principle is also well suited for the addressing of individual sites in optical lattices.

Condensed Matter::Quantum GasesMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Physics and Astronomy (miscellaneous)Scanning confocal electron microscopyFOS: Physical sciencesElectron tomographyUltracold atomScanning transmission electron microscopyPhysics::Atomic and Molecular ClustersEnergy filtered transmission electron microscopyPhysics::Atomic PhysicsElectron beam-induced depositionAtomic physicsHigh-resolution transmission electron microscopyInstrumentationEnvironmental scanning electron microscopeCondensed Matter - Statistical Mechanics
researchProduct

Cooling and stabilization by collisions in a mixed ion–atom system

2012

In mixed systems of trapped ions and cold atoms, the ions and atoms can coexist at different temperatures. This is primarily due to their different trapping and cooling mechanisms. The key questions of how ions can cool collisionally with cold atoms and whether the combined system allows stable coexistence, need to be answered. Here we experimentally demonstrate that rubidium ions cool in contact with magneto-optically trapped rubidium atoms, contrary to the general experimental expectation of ion heating. The cooling process is explained theoretically and substantiated with numerical simulations, which include resonant charge exchange collisions. The mechanism of single collision swap cool…

Condensed Matter::Quantum GasesMultidisciplinaryMaterials scienceGeneral Physics and AstronomyMineralogychemistry.chemical_elementGeneral ChemistryGeneral Biochemistry Genetics and Molecular BiologyRubidiumIonMixed systemschemistryPhysics::Plasma PhysicsAtomPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physicsNature Communications
researchProduct

2015

AbstractAtomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging,…

Condensed Matter::Quantum GasesMultidisciplinaryNanostructureStrain (chemistry)Computer scienceBioinformaticsEpitaxyMolecular physicsCondensed Matter::Materials ScienceMicroscopyAtomPhysics::Atomic and Molecular ClustersHoneycombPhysics::Atomic PhysicsGraphiteThin filmQuantum tunnellingScientific Reports
researchProduct

Ab initio simulation of yttrium oxide nanocluster formation on fcc Fe lattice

2010

Using results of density functional theory (DFT) calculations the first attempt towards the understanding of Y2O3 particles formation in oxide dispersed strengthened (ODS) ferritic–martensitic steels was performed. The present work includes modeling of single defects (O impurity atom, Fe vacancy and Y substitute atom), interaction between substituted Y atoms, Y–Fe vacancy pairs and oxygen impurity atoms in the iron matrix. The calculations have showed the repulsive interaction between the two Y substitute atoms at any separation distances that might mean that the oxygen atoms or O atoms with vacancies are required to form binding between atoms in the yttrium oxide nanoclusters.

Condensed Matter::Quantum GasesNuclear and High Energy PhysicsMaterials scienceAb initioOxidechemistry.chemical_elementYttriumNanoclustersCondensed Matter::Materials ScienceCrystallographychemistry.chemical_compoundNuclear Energy and EngineeringchemistryImpurityVacancy defectAtomPhysics::Atomic and Molecular ClustersGeneral Materials ScienceDensity functional theoryPhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear chemistryJournal of Nuclear Materials
researchProduct

Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP

2008

A new procedure to prepare isomerically clean samples of ions with a mass resolving power of more than 100,000 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.

Condensed Matter::Quantum GasesNuclear and High Energy PhysicsTandemChemistryAnalytical chemistryFOS: Physical sciencesMass spectrometryPenning trapIonTrap (computing)Physics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physicsNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear Experiment
researchProduct

Antihydrogen production within a Penning-Ioffe trap.

2008

Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

Condensed Matter::Quantum GasesPhysicsAntiparticleGeneral Physics and AstronomyPenning trapTrap (computing)Nuclear physicsAntiprotonAntimatterQuadrupolePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsIon trapAtomic physicsAntihydrogenPhysical review letters
researchProduct

Antiproton confinement in a Penning-Ioffe trap for antihydrogen.

2007

Antiprotons ((p) over bar) remain confined in a Penning trap, in sufficient numbers to form antihydrogen ((H) over bar) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with (p) over bar suggests that quadrupole Ioffe traps can be superimposed upon (p) over bar and e(+) traps to attempt the capture of (H) over bar atoms as they form, contrary to conclusions of previous analyses.

Condensed Matter::Quantum GasesPhysicsAntiparticleHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyPenning trapJNuclear physicsAntiprotonAntimatterQuadrupoleddc:550Physics::Atomic and Molecular ClustersHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsQuadrupole ion trapAntihydrogenPhysical review letters
researchProduct

Competition of Dzyaloshinskii-Moriya and Higher-Order Exchange Interactions in Rh/Fe Atomic Bilayers on Ir(111)

2018

Using spin-polarized scanning tunneling microscopy and density functional theory we demonstrate the occurrence of a novel type of noncollinear spin structure in $\mathrm{Rh}/\mathrm{Fe}$ atomic bilayers on Ir(111). We find that higher-order exchange interactions depend sensitively on the stacking sequence. For fcc-$\mathrm{Rh}/\mathrm{Fe}/\mathrm{Ir}(111)$, frustrated exchange interactions are dominant and lead to the formation of a spin spiral ground state with a period of about 1.5 nm. For hcp-$\mathrm{Rh}/\mathrm{Fe}/\mathrm{Ir}(111)$, higher-order exchange interactions favor an up-up-down-down ($\ensuremath{\uparrow}\ensuremath{\uparrow}\ensuremath{\downarrow}\ensuremath{\downarrow}$) s…

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsMagnetic momentStackingGeneral Physics and Astronomy02 engineering and technologySpin structureType (model theory)021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlaw0103 physical sciencesPhysics::Atomic and Molecular ClustersCondensed Matter::Strongly Correlated ElectronsDensity functional theoryScanning tunneling microscope010306 general physics0210 nano-technologySpin (physics)Ground statePhysical Review Letters
researchProduct

Formation, Detection and Trapping of Photoassociated Ultracold KRb Molecules

2005

Ultracold ground-state KRb molecules are formed by photoassociation and detected by resonant two-photon ionization. We have assigned both the photoassociation spectrum and the detection laser spectrum, and we have demonstrated magnetic trapping of triplet KRb

Condensed Matter::Quantum GasesPhysicsDye laserCondensed Matter::OtherTrappingLaserlaw.inventionlawIonizationPhysics::Atomic and Molecular ClustersMoleculePhysics::Atomic PhysicsAtomic physicsTriplet state2005 Quantum Electronics and Laser Science Conference
researchProduct

Theory of warm ionized gases: Equation of state and kinetic Schottky anomaly

2013

Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiment…

Condensed Matter::Quantum GasesPhysicsEquation of stateBubbleFOS: Physical sciencesKinetic energy01 natural sciences7. Clean energyHeat capacityPhysics - Plasma Physicssingle-bubble sonoluminescence ; plasma ; cavitationCondensed Matter - Other Condensed MatterPlasma Physics (physics.plasm-ph)SonoluminescenceIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsAdiabatic process010303 astronomy & astrophysicsSchottky anomalyOther Condensed Matter (cond-mat.other)Physical Review E
researchProduct