Search results for "combinatorial"

showing 10 items of 1208 documents

A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls.

2019

The importance of sustainable and green synthetic protocols for the synthesis of fine chemicals has rapidly increased during the last decades in an effort to reduce the use of fossil fuels and other finite resources. The replacement of common reagents by electricity provides a cost- and atom-efficient, environmentally friendly, and inherently safe access to novel synthetic routes. The selective formation of carbon-carbon bonds between two distinct substrates is a crucial tool in organic chemistry. This fundamental transformation enables access to a broad variety of complex molecular architectures. In particular, the aryl-aryl bond formation has high significance for the preparation of organ…

010405 organic chemistryChemistrybusiness.industryFossil fuelMolecular ConformationGeneral MedicineGeneral ChemistryElectrochemical Techniques010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryHydrocarbons Aromatic0104 chemical sciencesC c couplingHydrogenationbusinessAccounts of chemical research
researchProduct

Vinyl sulfone building blocks in covalently reversible reactions with thiols

2015

In the present study we use quantum-chemical calculations to investigate how the reactivity of vinyl sulfone-based compounds can be modified from an irreversible to a reversible reaction with thiols. Based on the predictions from theory, an array of nine different vinyl sulfones with systematically varying substitution pattern was synthesized and their crystal structures were determined. Subsequent Hirshfeld surface analyses employing the principle of electrostatic complementarity aid the understanding of the crystal packing of the synthesized compounds. Reactivity studies against the nucleophile 2-phenylethanethiol mirror the properties predicted by the quantum-chemical computations in sol…

010405 organic chemistryChemistrytechnology industry and agricultureGeneral ChemistryCrystal structureVinyl sulfone010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisReversible reaction0104 chemical sciencesCrystalNucleophileCovalent bondPolymer chemistryMaterials ChemistryReactivity (chemistry)New Journal of Chemistry
researchProduct

Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.

2017

Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C3-symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C2-symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV–vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffrac…

010405 organic chemistryChemistrytrigonal-bipyramidal and cubic heterobimetallic cagesElectrospray ionizationchemistry.chemical_element010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesIonInorganic ChemistryCrystallographyPhysical and Theoretical ChemistrySpectroscopyta116extended molecular library approachPalladiumInorganic chemistry
researchProduct

Supramolecular Architectures Based on Phosphonic Acid Diesters

2014

The interest of phosphonic acid dialkyl esters for generation of metal-organic materials is discussed using derivatives of porphyrin and 1,10-phenanthroline series as representative examples.

010405 organic chemistryCoordination polymerOrganic ChemistrySupramolecular chemistry010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryPorphyrin0104 chemical sciencesSupramolecular assemblyInorganic Chemistrychemistry.chemical_compoundchemistry[CHIM]Chemical SciencesOrganic chemistryComputingMilieux_MISCELLANEOUSPhosphorus, Sulfur, and Silicon and the Related Elements
researchProduct

Insights into the Mechanism of Anodic N–N Bond Formation by Dehydrogenative Coupling

2017

The electrochemical synthesis of pyrazolidine-3,5-diones and benzoxazoles by N-N bond formation and C,O linkage, respectively, represents an easy access to medicinally relevant structures. Electrochemistry as a key technology ensures a safe and sustainable approach. We gained insights in the mechanism of these reactions by combining cyclovoltammetric and synthetic studies. The electron-transfer behavior of anilides and dianilides was studied and led to the following conclusion: The N-N bond formation involves a diradical as intermediate, whereas the benzoxazole formation is based on a cationic mechanism. Besides these studies, we developed a synthetic route to mixed dianilides as starting m…

010405 organic chemistryDiradicalChemistryCationic polymerizationGeneral ChemistryBond formationBenzoxazole010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCombinatorial chemistryCatalysis0104 chemical sciencesAnodechemistry.chemical_compoundColloid and Surface ChemistryOrganic chemistryJournal of the American Chemical Society
researchProduct

2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions

2018

Iron‐catalyzed cross‐coupling reactions allow sustainable formation of C−C bonds using cost‐effective, earth‐abundant base‐metal catalysis for complex syntheses of pharmaceuticals, natural products, and fine chemicals. The major challenge to maintain full sustainability of the process is the identification of green and renewable solvents that can be harnessed to replace the conventional solvents for this highly attractive reaction. Herein, iron‐catalyzed cross‐coupling of aryl chlorides and tosylates with challenging organometallic reagents possessing β‐hydrogens is found to proceed in good to excellent yields with the green, sustainable, and eco‐friendly 2‐methyltetrahydrofuran (2‐MeTHF) a…

010405 organic chemistryGeneral Chemical EngineeringAryl2-MethyltetrahydrofuranHomogeneous catalysis010402 general chemistry01 natural sciencesCombinatorial chemistryCoupling reaction0104 chemical sciencesCatalysisSolventchemistry.chemical_compoundGeneral EnergychemistryReagentFunctional groupEnvironmental ChemistryGeneral Materials ScienceChemSusChem
researchProduct

Scalable and Selective Preparation of 3,3′,5,5′-Tetramethyl-2,2′-biphenol

2016

Biphenols are indispensable building blocks in ligand systems for organic catalysis. 3,3′5,5′-Tetramethyl-2,2′-biphenol is a particular versatile motif in different catalytic systems. We developed an easy to perform and scalable process to give access to large quantities of this important building block by the use of selenium dioxide, a common and readily available oxidizer.

010405 organic chemistryLigandChemistryOrganic ChemistryScalabilityOrganic chemistryPhysical and Theoretical Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesCatalysisBlock (data storage)Organic Process Research & Development
researchProduct

Rational Synthesis of Chiral Metal-Organic Frameworks from Preformed Rodlike Secondary Building Units.

2017

The lack of rational design methodologies to obtain chiral rod-based MOFs is a current synthetic limitation that hampers further expansion of MOF chemistry. Here we report a metalloligand design strategy consisting of the use, for the first time, of preformed 1D rodlike SBUs (1) for the rational preparation of a chiral 3D MOF (2) exhibiting a rare eta net topology. The encoded chiral information on the enantiopure ligand is efficiently transmitted first to the preformed helical 1D building block and, in a second stage, to the resulting chiral 3D MOF. These results open new routes for the rational design of chiral rod-based MOFs, expanding the scope of these unique porous materials.

010405 organic chemistryLigandChemistryRational designNanotechnology010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesInorganic ChemistryEnantiopure drugMetal-organic frameworkSBusPhysical and Theoretical ChemistryTopology (chemistry)Inorganic chemistry
researchProduct

6-Polyamino-substituted quinolines: synthesis and multiple metal (CuII, HgIIand ZnII) monitoring in aqueous media

2019

Chemoselective palladium-catalyzed arylation of polyamines with 6-bromoquinoline has been explored to prepare chelators for the detection of metal cations in aqueous media. The introduction of a single aromatic moiety into non-protected polyamine molecules was achieved using the commercially available Pd(dba)2/BINAP precatalyst to afford nitrogen chelators, in which the aromatic signalling unit is directly attached to the polyamine residue. Water-soluble receptors were then synthesized using N-alkylation of these polyamines by hydrophilic coordinating residues. By combining rich photophysical properties of the 6-aminoquinoline unit with a high coordination affinity of chelating polyamines a…

010405 organic chemistryMetal ions in aqueous solutionOrganic Chemistry010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryFluorescence0104 chemical sciencesMetalchemistry.chemical_compoundResidue (chemistry)chemistryvisual_artvisual_art.visual_art_mediumMoleculeChelationPhysical and Theoretical ChemistryPolyamineBINAPOrganic & Biomolecular Chemistry
researchProduct

Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis

2018

[EN] A multicatalytic approach that combines a bifunctional Brønsted base¿squaramide organocatalyst and Ag+ as Lewis acid has been applied in the reaction of unactivated ketones with tert-butyl isocyanoacetate to give chiral oxazolines bearing a quaternary stereocenter. The formal [3+2] cycloaddition provided high yields of the corresponding cis-oxazolines with good diastereoselectivity and excellent enantioselectivity, being applied to aryl¿alkyl and alkyl¿alkyl ketones.

010405 organic chemistryMetals and AlloysEnantioselective synthesisGeneral Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisCycloaddition0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsStereocenterchemistry.chemical_compoundchemistryCatàlisiFISICA APLICADAOrganocatalysisMaterials ChemistryCeramics and CompositesLewis acids and basesBifunctionalQuímica orgànica
researchProduct