Search results for "combinatorics"
showing 10 items of 1770 documents
The Liouville theorem and linear operators satisfying the maximum principle
2020
A result by Courr\`ege says that linear translation invariant operators satisfy the maximum principle if and only if they are of the form $\mathcal{L}=\mathcal{L}^{\sigma,b}+\mathcal{L}^\mu$ where $$ \mathcal{L}^{\sigma,b}[u](x)=\text{tr}(\sigma \sigma^{\texttt{T}} D^2u(x))+b\cdot Du(x) $$ and $$ \mathcal{L}^\mu[u](x)=\int \big(u(x+z)-u-z\cdot Du(x) \mathbf{1}_{|z| \leq 1}\big) \,\mathrm{d} \mu(z). $$ This class of operators coincides with the infinitesimal generators of L\'evy processes in probability theory. In this paper we give a complete characterization of the translation invariant operators of this form that satisfy the Liouville theorem: Bounded solutions $u$ of $\mathcal{L}[u]=0$ i…
Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions
2016
We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.
Norm or numerical radius attaining polynomials on C(K)
2004
Abstract Let C(K, C ) be the Banach space of all complex-valued continuous functions on a compact Hausdorff space K. We study when the following statement holds: every norm attaining n-homogeneous complex polynomial on C(K, C ) attains its norm at extreme points. We prove that this property is true whenever K is a compact Hausdorff space of dimension less than or equal to one. In the case of a compact metric space a characterization is obtained. As a consequence we show that, for a scattered compact Hausdorff space K, every continuous n-homogeneous complex polynomial on C(K, C ) can be approximated by norm attaining ones at extreme points and also that the set of all extreme points of the u…
Norm estimates for operators from Hp to ℓq
2008
Abstract We give upper and lower estimates of the norm of a bounded linear operator from the Hardy space H p to l q in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.
Visible parts and dimensions
2003
We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…
Coincidence problems for generalized contractions
2014
In this paper, we establish some new existence, uniqueness and Ulam-Hyers stability theorems for coincidence problems for two single-valued mappings. The main results of this paper extend the results presented in O. Mle?ni?e: Existence and Ulam-Hyers stability results for coincidence problems, J. Non-linear Sci. Appl., 6(2013), 108-116. In the last section two examples of application of these results are also given.
Local behaviour of singular solutions for nonlinear elliptic equations in divergence form
2012
We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…
One-dimensional families of projections
2008
Let m and n be integers with 0 < m < n. We consider the question of how much the Hausdorff dimension of a measure may decrease under typical orthogonal projections from onto m-planes provided that the dimension of the parameter space is one. We verify the best possible lower bound for the dimension drop and illustrate the sharpness of our results by examples. The question stems naturally from the study of measures which are invariant under the geodesic flow.
A Sokoban-type game and arc deletion within irregular digraphs of all sizes
2007
Cardinal invariants of cellular Lindelof spaces
2018
A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…