Search results for "combinatorics"

showing 10 items of 1770 documents

Additivity of affine designs

2020

We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p,  $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.

Algebra and Number Theory010102 general mathematics0102 computer and information sciencesAutomorphism01 natural sciencesCombinatoricsKeywords Affine block designs · Hadamard designs · Additive designs · Mathieu group M11010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaAdditive functionDiscrete Mathematics and CombinatoricsAffine transformationSettore MAT/03 - Geometria0101 mathematicsInvariant (mathematics)Abelian groupMathematics
researchProduct

Free sequences and the tightness of pseudoradial spaces

2019

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .

Algebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Hausdorff spaceMathematics::General TopologySpace (mathematics)01 natural sciencesInfimum and supremum010101 applied mathematicsCombinatoricsMathematics::LogicComputational MathematicsCharacter (mathematics)Free sequence tightness Lindelof degree pseudoradialFOS: MathematicsGeometry and TopologySettore MAT/03 - Geometria0101 mathematicsAnalysisMathematics - General TopologyMathematics
researchProduct

Characters, bilinear forms and solvable groups

2016

Abstract We prove a number of results about the ordinary and Brauer characters of finite solvable groups in characteristic 2, by defining and using the concept of the extended nucleus of a real irreducible character. In particular we show that the Isaacs canonical lift of a real irreducible Brauer character has Frobenius–Schur indicator +1. We also show that the principal indecomposable module corresponding to a real irreducible Brauer character affords a quadratic geometry if and only if each extended nucleus is a split extension of a nucleus.

Algebra and Number TheoryBrauer's theorem on induced charactersMathematics::Rings and Algebras010102 general mathematicsBilinear form01 natural sciencesCombinatoricsLift (mathematics)Frobenius–Schur indicatorQuadratic equationSolvable group0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryIndecomposable moduleMathematicsJournal of Algebra
researchProduct

Cardinal estimates involving the weak Lindelöf game

2021

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…

Algebra and Number TheoryCardinal invariants Cardinality bounds First-countable Lindelöf Topological game Weakly LindelöfApplied MathematicsFirst-countable spaceHausdorff spaceESPAÇOS TOPOLÓGICOSUrysohn and completely Hausdorff spacesCombinatoricsComputational MathematicsTopological gameCardinalityCompact spaceCountable setSettore MAT/03 - GeometriaGeometry and TopologyContinuum (set theory)AnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
researchProduct

Finitary shadows of compact subgroups of $$S(\omega )$$

2020

AbstractLet LF be the lattice of all subgroups of the group $$SF(\omega )$$SF(ω) of all finitary permutations of the set of natural numbers. We consider subgroups of $$SF(\omega )$$SF(ω) of the form $$C\cap SF(\omega )$$C∩SF(ω), where C is a compact subgroup of the group of all permutations. In particular, we study their distribution among elements of LF. We measure this using natural relations of orthogonality and almost containedness. We also study complexity of the corresponding families of compact subgroups of $$S(\omega )$$S(ω).

Algebra and Number TheoryCompact groups of permutationsDistribution (number theory)Group (mathematics)010102 general mathematicsLattice (group)Almost containednessNatural number0102 computer and information sciences01 natural sciencesOmegaMeasure (mathematics)CombinatoricsOrthogonality010201 computation theory & mathematicsOrthogonality of finitary subgroupsFinitary0101 mathematicsMartin’s axiom.MathematicsAlgebra universalis
researchProduct

On a paper of Beltrán and Shao about coprime action

2020

Abstract Assume that A and G are finite groups of coprime orders such that A acts on G via automorphisms. Let p be a prime. The following coprime action version of a well-known theorem of Ito about the structure of a minimal non-p-nilpotent groups is proved: if every maximal A-invariant subgroup of G is p-nilpotent, then G is p-soluble. If, moreover, G is not p-nilpotent, then G must be soluble. Some earlier results about coprime action are consequences of this theorem.

Algebra and Number TheoryCoprime integersMathematics::Number Theory010102 general mathematicsStructure (category theory)Automorphism01 natural sciencesPrime (order theory)Action (physics)CombinatoricsMathematics::Group Theory0103 physical sciences010307 mathematical physics0101 mathematicsMathematicsJournal of Pure and Applied Algebra
researchProduct

Computing the ℤ2-Cocharacter of 3 × 3 Matrices of Odd Degree

2013

Let F be a field of characteristic 0 and A = M 2, 1(F) the algebra of 3 × 3 matrices over F endowed with the only non trivial ℤ2-grading. Aver'yanov in [1] determined a set of generators for the T 2-ideal of graded identities of A. Here we study the identities in variables of homogeneous degree 1 via the representation theory of the symmetric group, and we determine the decomposition of the corresponding character into irreducibles.

Algebra and Number TheoryDegree (graph theory)Field (mathematics)Polynomial identityCocharacterCombinatoricsSet (abstract data type)GradingSettore MAT/02 - AlgebraCharacter (mathematics)Representation theory of the symmetric groupHomogeneousAlgebra over a fieldMathematicsCommunications in Algebra
researchProduct

Correspondences of Brauer characters and Sylow subgroup normalizers

2021

Abstract Let p > 3 and q ≠ p be primes, let G be a finite q-solvable group and let P ∈ Syl p ( G ) . Then G has a unique irreducible q-Brauer character of p ′ -degree lying over 1 P if and only if N G ( P ) / P is a q-group. One direction of this result follows from a natural McKay bijection of p ′ -degree irreducible q-Brauer characters, which is obtained under suitable conditions.

Algebra and Number TheoryDegree (graph theory)Group (mathematics)010102 general mathematicsSylow theorems01 natural sciencesCombinatoricsCharacter (mathematics)0103 physical sciencesBijection010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematicsJournal of Algebra
researchProduct

Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section

2018

International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.

Algebra and Number TheoryDegree (graph theory)Image (category theory)010102 general mathematicsDimension (graph theory)MSC: Primary 14J60 ; secondary 14J45Hyperplane sectionRank (differential topology)01 natural sciencesCohomologySegre embedding[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsAlgebraMathematics::Algebraic GeometryHyperplane0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsMathematics
researchProduct

Complex multiplication, Griffiths-Yukawa couplings, and rigidity for families of hypersurfaces

2003

Let M(d,n) be the moduli stack of hypersurfaces of degree d > n in the complex projective n-space, and let M(d,n;1) be the sub-stack, parameterizing hypersurfaces obtained as a d fold cyclic covering of the projective n-1 space, ramified over a hypersurface of degree d. Iterating this construction, one obtains M(d,n;r). We show that M(d,n;1) is rigid in M(d,n), although the Griffiths-Yukawa coupling degenerates for d<2n. On the other hand, for all d>n the sub-stack M(d,n;2) deforms. We calculate the exact length of the Griffiths-Yukawa coupling over M(d,n;r), and we construct a 4-dimensional family of quintic hypersurfaces, and a dense set of points in the base, where the fibres ha…

Algebra and Number TheoryDegree (graph theory)Mathematics - Complex Variables14D0514J3214D07Complex multiplicationYukawa potentialRigidity (psychology)14J70ModuliCombinatoricsAlgebraMathematics - Algebraic Geometry14J70; 14D05; 14D07; 14J32HypersurfaceMathematics::Algebraic GeometryMathematikFOS: MathematicsGeometry and TopologyComplex Variables (math.CV)Algebraic Geometry (math.AG)Stack (mathematics)Mathematics
researchProduct