Search results for "complexe"

showing 10 items of 920 documents

Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences

1999

Trimeric (bT) and monomeric (bM) light-harvesting complex II (LHCII) with a chlorophyll a/b ratio of 0.03 were reconstituted from the apoprotein overexpressed in Escherichia coli. Chlorophyll/xanthophyll and chlorophyll/protein ratios of bT complexes and 'native' LHCII are rather similar, namely, 0.28 vs 0. 27 and 10.5 +/- 1.5 vs 12, respectively, indicating the replacement of most chlorophyll a molecules with chlorophyll b, leaving one chlorophyll a per trimeric complex. The LD spectrum of the bT complexes strongly suggests that the chlorophyll b molecules adopt orientations similar to those of the chlorophylls a that they replace. The circular dichroism (CD) spectra of bM and bT complexes…

ChlorophyllChlorophyll bProtein FoldingChlorophyll aCircular dichroismPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein Complexesmedicine.disease_causeBiochemistryAbsorptionStructure-Activity Relationshipchemistry.chemical_compoundThermolysinmedicineEscherichia colichemistry.chemical_classificationPigmentationChlorophyll ACircular DichroismCrystallographySpectrometry FluorescenceMonomerEnergy TransferchemistrySpectrophotometryChlorophyllXanthophyllBiochemistry
researchProduct

Exchange of Pigment-Binding Amino Acids in Light-Harvesting Chlorophyll a/b Protein

1999

Four amino acids in the major light-harvesting chlorophyll (Chl) a/b complex (LHCII) that are thought to coordinate Chl molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kühlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chl molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments, although the thermal stability of the resulting mut…

ChlorophyllChloroplastsMacromolecular SubstancesStereochemistryMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesTrimerBiochemistrychemistry.chemical_compoundAmino Acid SequenceAmino AcidsPeptide sequencePlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll APeasPhotosystem II Protein Complexfood and beveragesAmino acidChloroplastB vitaminsAmino Acid SubstitutionchemistryChlorophyllThylakoidMutagenesis Site-DirectedCarrier ProteinsBiochemistry
researchProduct

Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes

2002

The role of arbuscular mycorrhiza in reducing Cd stress was investigated in three genotypes of Pisum sativum L. (cv. Frisson, VIR4788, VIR7128), grown in soil/sand pot cultures in the presence and absence of 2-3 mg kg(-1) bioavailable Cd, and inoculated or not with the arbuscular mycorrhizal fungus Glomus intraradices. Shoot, root and pod biomass were decreased by Cd in non-mycorrhizal plants. The presence of mycorrhiza attenuated the negative effect of Cd so that shoot biomass and activity of photosystem II, based on chlorophyll a fluorescence, were not significantly different between mycorrhizal plants growing in the presence or absence of the heavy metal (HM). Total P concentrations were…

ChlorophyllGenotypePhysiologyPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein Complexeschemistry.chemical_elementPlant SciencePhosphorus metabolismPisum[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/BotanicsSativumSymbiosisBotanyPhotosynthesisMycorrhizaSymbiosisComputingMilieux_MISCELLANEOUSAnalysis of VarianceCadmiumbiologyChlorophyll AfungiFungiPeasPhotosystem II Protein Complexfood and beveragesPhosphorus[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanicsbiology.organism_classificationArbuscular mycorrhizachemistryShootPlant StructuresCadmium
researchProduct

Carotenoid binding sites in LHCIIb

2000

The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30–50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly …

ChlorophyllLuteinPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesXanthophyllsBiologyBinding CompetitiveBiochemistrySubstrate SpecificityLight-harvesting complexchemistry.chemical_compoundNeoxanthinZeaxanthinsTrypsinProtein PrecursorsCarotenoidPlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll ALuteinPhotosystem II Protein Complexfood and beveragesPigments BiologicalPlantsbeta CaroteneCarotenoidseye diseasesZeaxanthinEnergy TransferchemistryBiochemistryXanthophyllElectrophoresis Polyacrylamide GelApoproteinsViolaxanthinEuropean Journal of Biochemistry
researchProduct

De-epoxidation of Violaxanthin in Light-harvesting Complex I Proteins

2004

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx wa…

ChlorophyllLuteinPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesXanthophyllsPhotosystem IThylakoidsBiochemistrychemistry.chemical_compoundSolanum lycopersicumSpinacia oleraceaEscherichia coliMolecular BiologyPhotosystemchemistry.chemical_classificationBinding SitesPhotosystem I Protein ComplexChemistryfood and beveragesPigments BiologicalCell Biologybeta CaroteneRecombinant ProteinsChloroplastKineticsBiochemistryXanthophyllThylakoidEpoxy CompoundsApoproteinsViolaxanthinJournal of Biological Chemistry
researchProduct

Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls

2017

Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concen…

ChlorophyllModels Molecular0106 biological sciences0301 basic medicineProtein DenaturationHot TemperatureLightLight-Harvesting Protein ComplexesGene ExpressionThylakoids01 natural sciencesBiochemistryProtein Structure SecondaryDissociation (chemistry)law.inventionchemistry.chemical_compoundlawpolycyclic compoundsDenaturation (biochemistry)CarotenoidPlant Proteinschemistry.chemical_classificationSinglet OxygenProtein Stabilityfood and beveragesHydrogen-Ion ConcentrationBiochemistryRecombinant DNAOxidation-ReductionProtein BindingRecombinant Fusion ProteinsBrassicamacromolecular substancesBiology03 medical and health sciencesProtein DomainsTetramerPlant senescenceChlorophyll APeasWaterOxygen030104 developmental biologyWater solubleSolubilitychemistryChlorophyllProtein MultimerizationApoproteins010606 plant biology & botanyBiochemistry
researchProduct

Early folding events during light harvesting complex II assembly in vitro monitored by pulsed electron paramagnetic resonance

2016

Efficient energy transfer in the major light harvesting complex II (LHCII) of green plants is facilitated by the precise alignment of pigments due to the protein matrix they are bound to. Much is known about the import of the LHCII apoprotein into the chloroplast via the TOC/TIC system and its targeting to the thylakoid membrane but information is sparse about when and where the pigments are bound and how this is coordinated with protein folding. In vitro, the LHCII apoprotein spontaneously folds and binds its pigments if the detergent-solubilized protein is combined with a mixture of chlorophylls a and b and carotenoids. In the present work, we employed this approach to study apoprotein fo…

ChlorophyllModels Molecular0301 basic medicineProtein FoldingPigment bindingLight-Harvesting Protein ComplexesBiophysicsBiochemistrylaw.invention03 medical and health scienceslawElectron paramagnetic resonancePlant ProteinsPulsed EPRChemistryElectron Spin Resonance SpectroscopyPeasPhotosystem II Protein ComplexCell BiologyProtein tertiary structureProtein Structure TertiaryChloroplastFolding (chemistry)KineticsCrystallography030104 developmental biologyEnergy TransferThylakoidProtein foldingApoproteinsProtein BindingBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Derivation of coarse-grained simulation models of chlorophyll molecules in lipid bilayers for applications in light harvesting systems

2015

The correct interplay of interactions between protein, pigment and lipid molecules is highly relevant for our understanding of the association behavior of the light harvesting complex (LHCII) of green plants. To cover the relevant time and length scales in this multicomponent system, a multi-scale simulation ansatz is employed that subsequently uses a classical all atomistic (AA) model to derive a suitable coarse grained (CG) model which can be backmapped into the AA resolution, aiming for a seamless conversion between two scales. Such an approach requires a faithful description of not only the protein and lipid components, but also the interaction functions for the indispensable pigment mo…

ChlorophyllModels MolecularChlorophyll bChlorophyll aChlorophyll ABilayerLipid BilayersLight-Harvesting Protein ComplexesGeneral Physics and AstronomyLight-harvesting complexchemistry.chemical_compoundCrystallographychemistryChemical physicsChlorophyllddc:540MoleculeProtein MultimerizationPhysical and Theoretical ChemistryProtein Structure QuaternaryLipid bilayerAnsatz
researchProduct

Structural and Functional Analysis of the Antiparallel Strands in the Lumenal Loop of the Major Light-harvesting Chlorophyll a/b Complex of Photosyst…

2007

The light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCIIb) fulfills multiple functions, such as light harvesting and energy dissipation under different illuminations. The crystal structure of LHCIIb at the near atomic resolution reveals an antiparallel strands structure in the lumenal loop between the transmembrane helices B/C. To study the structural and functional significances of this structure, three amino acids (Val-119, His-120, and Ser-123) in this region have been exchanged to Phe, Leu, and Gly, respectively, and the influence of the mutagenesis on the structure and function of LHCIIb has been investigated. The results are as follows. 1) Circular dichroism spect…

ChlorophyllModels MolecularCircular dichroismPhotosystem IIRecombinant Fusion ProteinsLight-Harvesting Protein ComplexesAntiparallel (biochemistry)BiochemistryFluorescencechemistry.chemical_compoundNeoxanthinSite-directed mutagenesisMolecular BiologyPlant ProteinsPhotobleachingChemistryChlorophyll ACircular DichroismPeasPhotosystem II Protein ComplexCell BiologyFluorescenceTransmembrane domainB vitaminsCrystallographyMutationMutagenesis Site-DirectedProtein BindingJournal of Biological Chemistry
researchProduct

How the Protein Environment Can Tune the Energy, the Coupling, and the Ultrafast Dynamics of Interacting Chlorophylls: The Example of the Water-Solub…

2020

The interplay between active molecules and the protein environment in light-harvesting complexes tunes the photophysics and the dynamical properties of pigment–protein complexes in a subtle way, which is not fully understood. Here we characterized the photophysics and the ultrafast dynamics of four variants of the water-soluble chlorophyll protein (WSCP) as an ideal model system to study the behavior of strongly interacting chlorophylls. We found that when coordinated by the WSCP protein, the presence of the formyl group in chlorophyll b replacing the methyl group in chlorophyll a strongly affects the exciton energy and the dynamics of the system, opening up the possibility of tuning the ph…

ChlorophyllModels MolecularLetterChemistryChlorophyll ALight-Harvesting Protein ComplexesTemperatureWater02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCoupling (physics)chemistry.chemical_compoundProtein environmentWater solubleChemical physicsChlorophyllThermodynamicsMoleculeGeneral Materials SciencePhysical and Theoretical Chemistry0210 nano-technologyUltrashort pulse
researchProduct