Search results for "complexes"

showing 10 items of 875 documents

Halogen-bonded solvates of tetrahaloethynyl cavitands

2017

The formation and structures of halogen-bonded solvates of three different tetrahaloethynyl cavitands with acetone, chloroform, acetonitrile, DMF and DMSO were prepared and investigated. The inclusion and host–guest behaviour of the resorcinarene cavitands was found to be highly dependent on the flexibility of the ethylene-bridging unit.

Chloroformta114010405 organic chemistryGeneral ChemistryResorcinarene010402 general chemistryCondensed Matter Physicshalogen bond ; cavitands ; resorcinarenes ; host-guest complexes01 natural sciencessupramolecular chemistrycavitands0104 chemical scienceschemistry.chemical_compoundChemistrychemistrysolvatessupramolekyylikemiaHalogenPolymer chemistryAcetoneOrganic chemistryGeneral Materials ScienceAcetonitrileta116Biochemistry Biophysics and Structural Biology
researchProduct

Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding.

2002

The major light-harvesting chlorophyll a/b protein (LHCIIb) of the plant photosynthetic apparatus is able to self-organise in vitro. When the recombinant apoprotein, Lhcb1, is solubilised in the denaturing detergent sodium (or lithium) dodecylsulfate (SDS or LDS) and then mixed with chlorophylls and carotenoids under renaturing conditions, structurally authentic LHCIIb forms. Assembly of functional LHCIIb, as indicated by the establishment of energy transfer between complex-bound chlorophyll molecules, occurs in two apparent kinetic steps with time constants of 10 to 30 seconds and 50 to 300 seconds, depending on the reaction conditions. Here, we use circular dichroism (CD) in the far-UV ra…

Chlorophyll aCircular dichroismProtein FoldingCircular DichroismPigment bindingProtein domainPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPhotochemistryPhotosynthesisProtein Structure SecondaryRecombinant Proteinschemistry.chemical_compoundPigmentchemistryStructural BiologyChlorophyllvisual_artvisual_art.visual_art_mediumMolecular BiologyProtein secondary structureMicellesSequence DeletionJournal of molecular biology
researchProduct

Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (xanthophyceae). Characterization…

1997

Abstract By the aid of circular dichroism (CD), absorbance and fluorescence spectroscopy, we studied the molecular organization of the pigment molecules in cells, isolated chloroplasts and the chlorophyll a / c light-harvesting complex (LHC) associated with photosystem II of the chlorphyll c -containing alga, Pleurochloris meiringensis . In cells and chloroplasts, similarly to higher plant chloroplasts, a (+) 693 nm CD band accompanied by a tail outside the absorbance indicated a long-range chiral organization of the chlorophyll molecules. The LHCII of these algae exhibited an intense negative CD band at 679 nm. However, in contrast to the chlorophyll a / b LHCII of higher plants, where the…

Chlorophyll aCircular dichroismRadiationRadiological and Ultrasound TechnologyPhotosystem IIBiophysicsfood and beveragesLight-harvesting complexes of green plantsPhotochemistryChloroplastAbsorbanceLight-harvesting complexchemistry.chemical_compoundchemistryChlorophyllRadiology Nuclear Medicine and imagingJournal of Photochemistry and Photobiology B: Biology
researchProduct

Early Steps in the Assembly of Light-harvesting Chlorophyll a/b Complex

2004

The light-harvesting chlorophyll a/b complex (LHCIIb) spontaneously assembles from its pigment and protein components in detergent solution. The formation of functional LHCIIb can be detected in time-resolved experiments by monitoring the establishment of excitation energy transfer from protein-bound chlorophyll b to chlorophyll a. To detect the possible initial steps of chlorophyll binding that may not yet give rise to chlorophyll b-to-a energy transfer, we have monitored LHCIIb assembly by measuring excitation energy transfer from a fluorescent dye, covalently bound to the protein, to the chlorophylls. In order to exclude interference of the dye with protein folding or pigment binding, th…

Chlorophyll bChlorophyll aChemistryPigment bindingChlorosomeLight-harvesting complexes of green plantsCell BiologyPhotochemistryBiochemistrychemistry.chemical_compoundChlorophyllChlorophyll bindingMolecular BiologyChlorophyll fluorescenceJournal of Biological Chemistry
researchProduct

Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

2015

One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence …

Chlorophyll bChlorophyllChlorophyll aCell-Free SystemPolymersLipid BilayersLight-Harvesting Protein ComplexesGeneral ChemistryPhotochemistryFluorescenceCatalysisFluorescence spectroscopyFluorescenceLight-harvesting complexchemistry.chemical_compoundMembraneSpectrometry FluorescencechemistryChlorophyllBiophysicsLipid bilayerPeptide HydrolasesAngewandte Chemie (International ed. in English)
researchProduct

Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b.

1997

Light-harvesting chlorophyll a/b-binding protein, LHCP, or its precursor, pLHCP, cannot be stably inserted into barley etioplast membranes in vitro. However, when these etioplast membranes are supplemented with the chlorophyll analogs Zn-pheophytin a/b, synthesized in situ from Zn-pheophorbide a/b and digeranyl pyrophosphate, pLHCP is inserted into a protease-resistant state. This proves that chlorophyll is the only component lacking in etioplast membranes that is necessary for stable LHCP insertion. Synthesis of Zn-pheophytin b alone promotes insertion of LHCP in vitro into a protease-resistant state, whereas synthesis of Zn-pheophytin a alone does not. Insertion of pLHCP into etioplast me…

Chlorophyll bChlorophyllChlorophyll aChlorophyll APhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPheophytinsCell BiologyBiologyPlantsBiochemistrychemistry.chemical_compoundB vitaminsZincMembraneGreeningBiochemistrychemistryEtioplastChlorophyllThylakoidMolecular BiologyThe Journal of biological chemistry
researchProduct

Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex.

2002

The major light-harvesting complex (LHCIIb) of photosystem II can be reconstituted in vitro from its recombinant apoprotein in the presence of a mixture of carotenoids and chlorophylls a and b. By varying the chlorophyll a/b ratio in the reconstitution mixture, the relative amounts of chlorophyll a and chlorophyll b bound to LHCIIb can be changed. We have analyzed the chlorophyll stoichiometry in recombinant wild type and mutant LHCIIb reconstituted at different chlorophyll a/b ratios in order to assess relative affinities of the chlorophyll-binding sites. This approach reveals five sites that exclusively bind chlorophyll b. Another site exhibits a slight preference of chlorophyll b over ch…

Chlorophyll bChlorophyllChlorophyll aPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyBiochemistrychemistry.chemical_compoundChlorophyll bindingBinding siteMolecular BiologyCarotenoidchemistry.chemical_classificationBinding SitesPeasPhotosystem II Protein ComplexCell BiologyRecombinant ProteinsB vitaminsKineticsBiochemistrychemistryAmino Acid SubstitutionChlorophyllMutagenesis Site-DirectedThe Journal of biological chemistry
researchProduct

Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb).

2006

The apoprotein of the major light-harvesting chlorophyll a/b complex (LHCIIb) is post-translationally imported into the chloroplast, where membrane insertion, protein folding, and pigment binding take place. The sequence and molecular mechanism of the latter steps is largely unknown. The complex spontaneously self-organises in vitro to form structurally authentic LHCIIb upon reconstituting the unfolded recombinant protein with the pigments chlorophyll a, b, and carotenoids in detergent micelles. Former measurements of LHCIIb assembly had revealed two apparent kinetic phases, a faster one (tau1) in the range of 10 s to 1 min, and a slower one (tau2) in the range of several min. To unravel th…

Chlorophyll bChlorophyllChlorophyll aTime FactorsPigment bindingLight-Harvesting Protein ComplexesModels BiologicalFluorescencechemistry.chemical_compoundStructural BiologyChlorophyll bindingAnimalsProtein Structure QuaternaryMolecular BiologyChlorophyll ACircular DichroismLight-harvesting complexes of green plantsChloroplastB vitaminsKineticsBiochemistrychemistryEnergy TransferChlorophyllBiophysicsChlamydomonas reinhardtiiProtein BindingJournal of molecular biology
researchProduct

Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments.

2007

Time-local and time-nonlocal theories are used in combination with optical spectroscopy to characterize the water-soluble chlorophyll binding protein complex (WSCP) from cauliflower. The recombinant cauliflower WSCP complexes reconstituted with either chlorophyll b (Chl b) or Chl a/Chl b mixtures are characterized by absorption spectroscopy at 77 and 298 K and circular dichroism at 298 K. On the basis of the analysis of these spectra and spectra reported for recombinant WSCP reconstituted with Chl a only (Hughes, J. L.; Razeghifard, R.; Logue, M.; Oakley, A.; Wydrzynski, T.; Krausz, E. J. Am. Chem. Soc. U.S.A. 2006, 128, 3649), the "open-sandwich" model proposed for the structure of the pig…

Chlorophyll bChlorophyllModels MolecularCircular dichroismOptics and PhotonicsAbsorption spectroscopyChemistryDimerExcitonChlorophyll ACircular DichroismSpectrum AnalysisStatic ElectricityLight-Harvesting Protein ComplexesBrassicaSpectral lineSurfaces Coatings and Filmschemistry.chemical_compoundCrystallographyKineticsModels ChemicalMaterials ChemistryChlorophyll bindingPhysical and Theoretical ChemistrySpectroscopyThe journal of physical chemistry. B
researchProduct

Chlorophyll b is involved in long-wavelength spectral properties of light-harvesting complexes LHC I and LHC II.

2001

AbstractChlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species…

Chlorophyll bChlorophyllPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesPhotosystem IPhotochemistryBiochemistryAbsorptionLight-harvesting complexReconstitutionchemistry.chemical_compoundSolanum lycopersicumStructural BiologySpinacia oleraceaGeneticsChlorophyll bindingCentrifugation Density GradientMolecular BiologyChlorophyll fluorescenceLong-wavelength chlorophyllBinding SitesPhotosystem I Protein ComplexChemistryChlorophyll ATemperaturePhotosystem II Protein ComplexLight-harvesting complexes of green plantsCell BiologyPigments BiologicalPlant LeavesSpectrometry FluorescenceLight-harvesting complexChlorophyll fluorescenceChlorophyll bindingProtein BindingFEBS letters
researchProduct