Search results for "continuity"

showing 10 items of 378 documents

A new full descriptive characterization of Denjoy-Perron integral

1995

It is proved that the absolute continuity of the variational measure generated by an additive interval function \(F\) implies the differentiability almost everywhere of the function \(F\) and gives a full descriptive characterization of the Denjoy-Perron integral.

Pure mathematicsHenstock–Kurzweil integralMathematical analysisMeasure (physics)Riemann integralFunction (mathematics)Absolute continuitysymbols.namesakesymbolsAlmost everywhereGeometry and TopologyDaniell integralDifferentiable functionAnalysisMathematics
researchProduct

From metric spaces to partial metric spaces

2013

Motivated by experience from computer science, Matthews (1994) introduced a nonzero self-distance called a partial metric. He also extended the Banach contraction principle to the setting of partial metric spaces. In this paper, we show that fixed point theorems on partial metric spaces (including the Matthews fixed point theorem) can be deduced from fixed point theorems on metric spaces. New fixed point theorems on metric spaces are established and analogous results on partial metric spaces are deduced. MSC:47H10, 54H25.

Pure mathematicsInjective metric spaceApplied MathematicsMathematical analysismetric spacepartial metric spaceEquivalence of metricsIntrinsic metricConvex metric spaceMetric spaceUniform continuityfixed pointFréchet spaceSettore MAT/05 - Analisi MatematicaMetric mapGeometry and TopologyMathematicsFixed Point Theory and Applications
researchProduct

On $L^p$ resolvent estimates for Laplace-Beltrami operators on compact manifolds

2011

Abstract. In this article we prove Lp estimates for resolvents of Laplace–Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation was to obtain Lp Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of Lp resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the …

Pure mathematicsLaplace transformParametrixApplied MathematicsGeneral MathematicsMathematics::Analysis of PDEsTorusInverse problemAbsolute continuityMathematics::Spectral TheoryMathematics - Analysis of PDEsLaplace–Beltrami operatorEuclidean geometryFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]ResolventMathematicsAnalysis of PDEs (math.AP)
researchProduct

Tangent lines and Lipschitz differentiability spaces

2015

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces. We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces. We show that any tangent space of a Lipschitz differentiability space contains at least $n$ distinct tangent lines, obtained as the blow-up of $n$ Lipschitz curves, whe…

Pure mathematicsLipschitz differentiability spaces; metric geometry; Ricci curvature; tangent of metric spaces01 natural sciencesMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaTangent lines to circles0103 physical sciencesTangent spaceClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric geometryDifferentiable function0101 mathematicsReal lineMathematicstangent of metric spacesQA299.6-433Applied Mathematics010102 general mathematicsTangentLipschitz differentiability spacesMetric Geometry (math.MG)Lipschitz continuityFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spaceRicci curvatureMathematics - Classical Analysis and ODEsMetric (mathematics)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometryAnalysis
researchProduct

Nonlinear balayage on metric spaces

2009

We develop a theory of balayage on complete doubling metric measure spaces supporting a Poincaré inequality. In particular, we are interested in continuity and p-harmonicity of the balayage. We also study connections to the obstacle problem. As applications, we characterize regular boundary points and polar sets in terms of balayage. Original Publication:Anders Björn, Jana Björn, Tero Mäkäläinen and Mikko Parviainen, Nonlinear balayage on metric spaces, 2009, Nonlinear Analysis, (71), 5-6, 2153-2171.http://dx.doi.org/10.1016/j.na.2009.01.051Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com/

Pure mathematicsMatematikBalayageApplied MathematicsMathematical analysisPoincaré inequalityBoundary (topology)Measure (mathematics)symbols.namesakeMetric spaceMetric (mathematics)Obstacle problemsymbolsBalayage; Boundary regularity; Continuity; Doubling measure; Metric space; Nonlinear; Obstacle problem; Perron solution; p-harmonic; Polar set; Poincaré inequality; Potential theory; SuperharmonicAnalysisMathematicsMathematicsPolar set (potential theory)
researchProduct

Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces

2003

Abstract We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev–Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.

Pure mathematicsMathematical analysisLipschitz continuityModulus of continuityCheeger-harmonicConvex metric spaceUniform continuityMetric spaceLipschitz domainPoincaré inequalityheat kerneldoubling measureMetric mapLipschitz regularitylogarithmic Sobolev inequalityMetric differentialhypercontractivityAnalysisNewtonian spaceMathematicsJournal of Functional Analysis
researchProduct

Sharpness of uniform continuity of quasiconformal mappings onto s-John domains

2017

We construct examples to show the sharpness of uniform continuity of quasiconformal mappings onto $s$-John domains. Our examples also give a negative answer to a prediction in [7].

Pure mathematicsMathematics - Complex VariablesGeneral Mathematics010102 general mathematicsta111s-John domainquasiconformal mappinginternal diameter16. Peace & justice01 natural sciencesNegative - answerUniform continuity30C62 30C65FOS: Mathematics0101 mathematicsinternal metricComplex Variables (math.CV)Construct (philosophy)Mathematicsuniform continuity
researchProduct

On the inverse absolute continuity of quasiconformal mappings on hypersurfaces

2018

We construct quasiconformal mappings $f\colon \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ for which there is a Borel set $E \subset \mathbb{R}^2 \times \{0\}$ of positive Lebesgue $2$-measure whose image $f(E)$ has Hausdorff $2$-measure zero. This gives a solution to the open problem of inverse absolute continuity of quasiconformal mappings on hypersurfaces, attributed to Gehring. By implication, our result also answers questions of V\"ais\"al\"a and Astala--Bonk--Heinonen.

Pure mathematicsMathematics::Complex VariablesMathematics - Complex VariablesGeneral MathematicsImage (category theory)Open problem010102 general mathematicsHausdorff spaceZero (complex analysis)InverseAbsolute continuityLebesgue integration01 natural sciences30C65 30L10funktioteoriasymbols.namesakeFOS: MathematicssymbolsMathematics::Metric GeometryComplex Variables (math.CV)0101 mathematicsBorel setMathematics
researchProduct

Weighted Hardy inequalities beyond Lipschitz domains

2014

It is a well-known fact that in a Lipschitz domain \Omega\subset R^n a p-Hardy inequality, with weight d(x,\partial\Omega)^\beta, holds for all u\in C_0^\infty(\Omega) whenever \beta<p-1. We show that actually the same is true under the sole assumption that the boundary of the domain satisfies a uniform density condition with the exponent \lambda=n-1. Corresponding results also hold for smaller exponents, and, in fact, our methods work in general metric spaces satisfying standard structural assumptions.

Pure mathematicsMathematics::Functional AnalysisHausdorff-sisältöApplied MathematicsGeneral Mathematicsmetric spaceBoundary (topology)LambdaLipschitz continuityOmega46E35 26D15Domain (mathematical analysis)Functional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacemetrinen avaruusHardyn epäyhtälöuniform fatnessLipschitz domainHardy inequalityHausdorff contenttasainen paksuusExponentFOS: MathematicsMathematics
researchProduct

Abstract and concrete tangent modules on Lipschitz differentiability spaces

2020

We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from a recent article by Bate--Kangasniemi--Orponen, this equivalence is used to show that the ${\rm Lip}-{\rm lip}$ -type condition ${\rm lip} f\le C|Df|$ implies the existence of a Lipschitz differentiable structure, and moreover self-improves to ${\rm lip} f =|Df|$. We also provide a direct proof of a result by Gigli and the second author that, for a space with a strongly rectifiable decomposition, Gigli'…

Pure mathematicsMathematics::Functional AnalysisekvivalenssimatematiikkaApplied MathematicsGeneral MathematicsTangentMetric Geometry (math.MG)Space (mathematics)Lipschitz continuitymetriset avaruudetFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Metric GeometryFOS: MathematicsEmbedding53C23 46E35 49J52Mathematics::Metric GeometryDirect proofDifferentiable functionIsomorphismMathematics::Differential GeometryMathematicsMathematics
researchProduct