Search results for "control engineering"
showing 10 items of 435 documents
Mechatronic Design for an Extrusion-Based Additive Manufacturing Machine
2017
3D printers, especially in the implementation of innovative extrusion processes which do not have a long history of development, are often built by adapting mechanical designs, drives and controls previously developed for generic machine tools. This is done through a process of choice and integration which is based principally on empirical criteria and taking into account separately the different aspects and parameters. Hereafter, we present an integrated mechatronic approach which has been adopted to design from the scratch a machine to implement the innovative metal injection moulding (MIM) technology. Its extrusion rate involves the adaptation of the generated trajectories and consequent…
Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems
2016
This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…
Robustness with Respect to Delay Uncertainties of a Predictor-Observer Based Discrete-Time Controller
2006
This paper focuses on the delay-dependent stability problem of a discrete-time prediction scheme to stabilize possible unstable continuous-time systems. The delay-dependent stability condition is expressed in terms of LMIs. The separation principle between the proposed predictor and a state observer is also proved. The closed-loop system is shown to be robust with respect to uncertainties in the knowledge on the plant parameters, the delay and the sampling period. The proposed scheme has been tested in a real-time application to control the roll angle in a prototype of a quad-rotor mini-helicopter.
Integral Control Action in Precise Positioning Systems with Friction
2016
Abstract For high precision positioning systems a fast and accurate settling to the reference state is most significant and, at the same time, challenging from the control point of view. Traditional use of an integral coaction in feedback can attain a desired reference tracking at steady-state motion, but can fail in case of precise positioning. Most crucial is that this is independent on how accurate the integral control part is tuned. This paper addresses the feedback control action in precise positioning systems with friction. Analyzing the closed-loop control dynamics with nonlinear friction in feedback it is shown why the integral action cannot efficiently cope with Coulomb friction wh…
Identification and control design for path tracking of hydraulic loader crane
2017
The controlled operation of hydraulic machines with multiple degrees of freedom is challenging due to complex nonlinear dynamics of cylinder actuators, in addition to multibody dynamics like in the case of hydraulic manipulators. This paper addresses the system identification and control design for path tracking of a standard hydraulic loader crane. The kinematics of the crane is solved for operation in the vertical plane and generation of trajectories for the tool tip to be followed. A frequency response measurements and analysis have been done for dynamics modeling of both hydraulic cylinders actuating main boom and jib. The static dead-zone type input non-linearity has been identified an…
Flow Control of Fluid in Pipelines Using PID Controller
2019
In this paper, a PID controller is utilized in order to control the flow rate of the heavy oil in pipelines by controlling the vibration in a motor pump. A torsional actuator is placed on the motor pump in order to control the vibration on a motor and consequently controlling the flow rates in pipelines. The necessary conditions for the asymptotic stability of the proposed controller are validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines.
Engineering multi-agent systems using feedback loops and holarchies
2016
This paper presents a methodological approach for the engineering of Multi-Agent Systems using feedback loops as a first class concept in order to identify organizations. Feedback loops are a way for modeling complex systems that expose emergent behavior by means of a cause-effect loop between two levels called micro and macro levels of the system. The proposed approach principles consist in defining an abstract feedback loop pattern and providing activities and guidelines in order to identify and refine possible candidates for feedback loops during the analysis phase of the Aspecs methodology. This approach is illustrated by using an example drawn from the smart grid field.
Analysis of Linear Feedback Position Control in Presence of Presliding Friction
2016
Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information
2016
The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H 8 controller with full access to the complete state information and two static output-fee…
Kinematic synthesis of a new 3D printing solution
2016
Low-cost production of metal parts is a challenge nowadays in the Additive Manufacturing world and new methods are being developed. The MIM technique is an innovative approach for 3D printing. This method requires a machine with suitable kinematics capable of generating the adequate movements. The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.