Search results for "controllability"

showing 10 items of 46 documents

Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder

2020

This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…

0209 industrial biotechnologyComputer scienceStiffnessComputingMilieux_LEGALASPECTSOFCOMPUTING02 engineering and technologyLinear actuatorMotion controlSizingCylinder (engine)law.inventionControllabilityHydraulic cylinder020901 industrial engineering & automation020401 chemical engineeringlawControl theoryLinear motionVDP::Teknologi: 500::Maskinfag: 570medicine0204 chemical engineeringmedicine.symptomHydraulic machineryActuator
researchProduct

Dynamic characterization for the dielectric electroactive polymer fundamental sheet

2012

Published version of an article published in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-012-4423-6 A study into the appropriateness of characterizing the dynamics of the dielectric electroactive polymer (DEAP) fundamental sheet has been performed. Whereby a model describing the dynamics of the DEAP fundamental sheet is developed, parameters of the models are determined using experimental/simulation results, and verification has been conducted to determine the precision of the dynamic model. The precision for the DEAP sheet-obtained dynamic model could not be verified unless some parameters c…

EngineeringDEAPMechanical engineeringFixtureIndustrial and Manufacturing EngineeringViscoelasticityworking principlesDEAPElectroactive polymerscharacterizationdynamic rangetesting rigDynamic rangebusiness.industryMechanical EngineeringmodelingNatural frequencydynamic analysissimulationComputer Science ApplicationsControllabilityControl and Systems EngineeringVDP::Technology: 500::Materials science and engineering: 520::Polymer and plastics: 523Material propertiesbusinessSoftwareThe International Journal of Advanced Manufacturing Technology
researchProduct

Controlled time integration for the numerical simulation of meteor radar reflections

2016

We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …

010504 meteorology & atmospheric sciencesComputer scienceMETEORPLASMATIC OBJECTSRADAR REFLECTIONS01 natural sciencesplasmatic objectslaw.inventionINTEGRAL EQUATIONSlawRadar010303 astronomy & astrophysicsSpectroscopyEARTH ATMOSPHEREvolume integral equationRadiationPLASMANUMERICAL MODELSMathematical analysisFinite differenceNUMERICAL METHODMETEORSAtomic and Molecular Physics and OpticsCALCULATIONSControllabilityDISCRETE EXTERIOR CALCULUSAstrophysics::Earth and Planetary AstrophysicsMAGNETOPLASMADiscretizationRADAR REFLECTIONTIME DOMAIN ANALYSISVOLUME INTEGRAL EQUATIONdiscrete exterior calculusELECTROMAGNETIC SCATTERINGOpticsFINITE DIFFERENCE TIME DOMAIN METHOD0103 physical sciencesSCATTERINGTime domainmeteorsNUMERICAL METHODS0105 earth and related environmental sciencesta113ta114Computer simulationbusiness.industryta111Finite-difference time-domain methodRADARDiscrete exterior calculuselectromagnetic scatteringradar reflectionsELECTROMAGNETIC METHODmeteoritbusinessJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

On a numerical solution of the Maxwell equations by discrete exterior calculus

2014

osittaisdifferentiaaliyhtälötnumeeriset menetelmätscatteringsähkömagneettiset kentätharmonic waveelectromagnetismexact controllabilitydiscrete exterior calculusleapfrogmesh generationnon-uniform time steppingdiscrete HodgeMaxwellin yhtälötnumeerinen analyysiVoronoi diagramthe Maxwell equations
researchProduct

Optimized design of wide-area PSS for damping of inter-area oscillations

2015

In this paper a genetic algorithm based wide area power system stabilizer (PSS) in a multi machine power system for damping of low frequency inter-area oscillations has been presented. The wide area PSS is composed of two stages, the input of one stage is a local signal and the input of other is a global signal. Geometric measure of controllability and observability is used to select the most effective stabilizing signals and location of controller. Tie line active power flow deviation is found to be the most effective input signal. Time domain based objective function is minimized, in which the deviation in the oscillatory rotor speed of generator is involved so that the stability performa…

ControllabilityEngineeringElectric power systembusiness.industryControl theoryObservabilityTime domainbusinessTie lineSignalStability (probability)2015 IEEE 11th International Conference on Power Electronics and Drive Systems
researchProduct

Strong quantum scarring by local impurities

2016

We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of…

PhysicsQuantum PhysicsSemiclassics and chaos in quantum systemsMultidisciplinaryta114Wave packetFOS: Physical sciencesquantum scars01 natural sciences114 Physical sciencesArticle010305 fluids & plasmasControllabilityQuantum transportImpurityQuantum mechanics0103 physical sciencesPeriodic orbitsQuantum Physics (quant-ph)010306 general physicsQuantumEigenvalues and eigenvectorsQuantum well
researchProduct

Pipeline Monitoring Architecture Based on Observability and Controllability Analysis

2019

Recently many techniques with different applicability have been developed for damage detection in the pipeline. The pipeline system is designed as a distributed parameter system, where the state space of the distributed parameter system has infinite dimension. This paper is dedicated to the problem of observability as well as controllability analysis in the pipeline systems. Some theorems are presented in order to test the observability and controllability of the system. Computing the rank of the controllability and observability matrix is carried out using Matlab.

0209 industrial biotechnologyRank (linear algebra)Computer sciencePipeline (computing)020208 electrical & electronic engineering02 engineering and technologyPipeline transportControllability020901 industrial engineering & automationControl theoryDistributed parameter system0202 electrical engineering electronic engineering information engineeringState spaceObservabilityMATLABcomputercomputer.programming_language2019 IEEE International Conference on Mechatronics (ICM)
researchProduct

A round peg in a square hole: strategy-situation fit of intra- and interpersonal emotion regulation strategies and controllability

2019

Although the importance of contextual factors is often recognised, research on emotion regulation strategies (ERS) has mainly focused so far on the effectiveness of ERS across situations. In the present research, we tested the strategy-situation fit hypothesis, which does not assume general effectiveness of ERS but instead stresses the importance of the congruency between ERS and the contexts in which they are used. Using a longitudinal Ambulatory Assessment dataset (

AdultMaleEmotions05 social sciencesInterpersonal emotion regulationFlexibility (personality)050109 social psychologyExperimental and Cognitive PsychologyEmotional Adjustment050105 experimental psychologySquare (algebra)Emotional RegulationControllabilityYoung AdultArts and Humanities (miscellaneous)Developmental and Educational PsychologyHumansFemaleInterpersonal Relations0501 psychology and cognitive sciencesLongitudinal StudiesStudentsPsychologyCognitive psychologyCognition and Emotion
researchProduct

Fixed domain approaches in shape optimization problems

2012

This work is a review of results in the approximation of optimal design problems, defined in variable/unknown domains, based on associated optimization problems defined in a fixed ?hold-all? domain, including the family of all admissible open sets. The literature in this respect is very rich and we concentrate on three main approaches: penalization?regularization, finite element discretization on a fixed grid, controllability and control properties of elliptic systems. Comparison with other fixed domain approaches or, in general, with other methods in shape optimization is performed as well and several numerical examples are included.

Mathematical optimizationOptimization problemDiscretizationApplied MathematicsOpen setGridRegularization (mathematics)Finite element methodComputer Science ApplicationsTheoretical Computer ScienceControllabilitySignal ProcessingShape optimizationMathematical PhysicsMathematicsInverse Problems
researchProduct

An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

2013

This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement.Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problem…

fourth-order Runge–Kuttata113Numerical AnalysisOptimization problemfluid–structure interactionta114Physics and Astronomy (miscellaneous)DiscretizationApplied Mathematicsta111Mathematical analysisSpectral element methodspectral element methodAcoustic wavecoupled problemcontrollabilityComputer Science ApplicationsControllabilityComputational MathematicsMultigrid methodRate of convergenceModeling and SimulationConjugate gradient methodMathematicsJournal of Computational Physics
researchProduct