Search results for "convex function"

showing 10 items of 50 documents

About the finite convergence of the proximal point algorithm

1988

We study the finite convergence property of the proximal point algorithm applied to the partial inverse, with respect to a subspace, of the subdifferential of a polyhedral convex function. Using examples we show how sufficient conditions providing the finite convergence can be realized and we give a case with non finite termination.

Proximal pointFinite convergenceProperty (programming)InverseProximal Gradient MethodsSubderivativeConvex functionAlgorithmSubspace topologyMathematics
researchProduct

An implicit non-linear time dependent equation has a solution

1991

has a solution (u, u, w). The operators &s(l) and a(t) are maximal monotone from a real Hilbert space V to its dual such that &(r) + 9?(r) are V-coercive and a(r) are not degenerate. A linear compact injection i embeds V to a real Banach space W and each d(r) is the strongly monotone subdifferential of a continuous convex function #(I, ) on W. The function f is square integrable. The functions W(r): V+ W* are Lipschitzian as V*-valued functions. Section 3 contains the theorems. The main result is Theorem 2. Theorems 3 and 4 demonstrate the smoothing effect on the initial condition. Their proofs are given in Section 4. They exploit the methods of di Benedetto and Showalter, [4], who studied …

Pure mathematicsApplied MathematicsHilbert spaceBanach spaceSubderivativeStrongly monotonesymbols.namesakeMonotone polygonSquare-integrable functionFunctional equationsymbolsConvex functionAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Strong Converse Results for Linking Operators and Convex Functions

2020

We consider a family B n , ρ c of operators which is a link between classical Baskakov operators (for ρ = ∞ ) and their genuine Durrmeyer type modification (for ρ = 1 ). First, we prove that for fixed n , c and a fixed convex function f , B n , ρ c f is decreasing with respect to ρ . We give two proofs, using various probabilistic considerations. Then, we combine this property with some existing direct and strong converse results for classical operators, in order to get such results for the operators B n , ρ c applied to convex functions.

Pure mathematicsArticle Subject010102 general mathematicsMathematicsofComputing_GENERALProbabilistic logicType (model theory)Mathematical proof01 natural sciences010104 statistics & probabilityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESBaskakov operatorConverseQA1-939Order (group theory)0101 mathematicsConvex functionLink (knot theory)AnalysisMathematicsMathematicsJournal of Function Spaces
researchProduct

Approximation by uniform domains in doubling quasiconvex metric spaces

2020

We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.

Pure mathematicsPrimary 30L99. Secondary 46E35 26B30Algebraic geometry01 natural sciencesDomain (mathematical analysis)funktioteoriaQuasiconvex functionMathematics::Group TheoryquasiconvexityMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsuniform domainComputer Science::DatabasesMathematicsPartial differential equationFunctional analysis010102 general mathematicsMetric Geometry (math.MG)General Medicinemetriset avaruudetMetric spaceBounded functionSobolev extension010307 mathematical physicsfunktionaalianalyysi
researchProduct

A density problem for Sobolev spaces on Gromov hyperbolic domains

2017

We prove that for a bounded domain $\Omega\subset \mathbb R^n$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W^{1,\,\infty}(\Omega)$ is dense in $W^{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C^{\infty}(\mathbb R^n)$ is dense in $W^{1,\,p}(\Omega)$ for $1\le p<\infty$.

Pure mathematicsdensityApplied Mathematics010102 general mathematicsta111Sobolev space01 natural sciencesDomain (mathematical analysis)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisQuasiconvex functionPlanartiheysBounded function0103 physical sciencesMetric (mathematics)FOS: MathematicsMathematics::Metric Geometry010307 mathematical physics0101 mathematicsAnalysisMathematics
researchProduct

Relaxation of Quasilinear Elliptic SystemsviaA-quasiconvex Envelopes

2002

We consider the weak closure WZof the set Z of all feasible pairs (solution, flow) of the family of potential elliptic systems div s0 s=1 s(x)F 0 s(ru(x )+ g(x)) f(x) =0i n; u =( u1;:::;um)2 H 1 0 (; R m ) ; =( 1;:::;s 0 )2 S; where R n is a bounded Lipschitz domain, Fs are strictly convex smooth functions with quadratic growth and S =f measurable j s(x )=0o r 1 ;s =1 ;:::;s0 ;1(x )+ +s0 (x )=1 g .W e show that WZis the zero level set for an integral functional with the integrand QF being the A-quasiconvex envelope for a certain functionF and the operator A = (curl,div) m . If the functions Fs are isotropic, then on the characteristic cone (dened by the operator A) QF coincides with the A-p…

Quadratic growthCurl (mathematics)Pure mathematicsControl and OptimizationElliptic systemsIsotropyMathematical analysisComputational MathematicsQuasiconvex functionLipschitz domainControl and Systems EngineeringBounded functionConvex functionMathematicsESAIM: Control, Optimisation and Calculus of Variations
researchProduct

L∞ estimates in optimal mass transportation

2016

We show that in any complete metric space the probability measures μ with compact and connected support are the ones having the property that the optimal transportation distance to any other probability measure ν living on the support of μ is bounded below by a positive function of the L∞ transportation distance between μ and ν. The function giving the lower bound depends only on the lower bound of the μ-measures of balls centered at the support of μ and on the cost function used in the optimal transport. We obtain an essentially sharp form of this function. In the case of strictly convex cost functions we show that a similar estimate holds on the level of optimal transport plans if and onl…

Sequence010102 general mathematicsta111Function (mathematics)01 natural sciencesUpper and lower boundsComplete metric space010101 applied mathematicsCombinatoricsMetric spaceBounded functionoptimal mass transportationWasserstein distance0101 mathematicsConvex functionAnalysisProbability measureMathematicsJournal of Functional Analysis
researchProduct

On Γ-convergence of pairs of dual functionals

2011

Abstract The paper considers a slightly modified notion of the Γ-convergence of convex functionals in uniformly convex Banach spaces and establishes that under standard coercitivity and growth conditions the Γ-convergence of a sequence of functionals { F j } to F ˜ implies that the corresponding sequence of dual functionals { F j ⁎ } converges in an analogous sense to the dual to F ˜ functional F ˜ ⁎ .

SequencePure mathematicsDualityApplied MathematicsMathematical analysisRegular polygonBanach spaceDuality (optimization)Dual (category theory)Γ-convergenceΓ-convergenceConvergence (routing)Convex functionalsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Stackelberg equilibrium with many leaders and followers. The case of zero fixed costs

2017

Abstract I study a version of the Stackelberg game with many identical firms in which leaders and followers use a continuous cost function with no fixed cost. Using lattice theoretical methods I provide a set of conditions that guarantee that the game has an equilibrium in pure strategies. With convex costs the model shows the same properties as a quasi-competitive Cournot model. The same happens with concave costs, but only when the number of followers is small. When this number is large the leaders preempt entry. I study the comparative statics and the limit behavior of the equilibrium and I show how the main determinants of market structure interact. More competition between the leaders …

Stackelberg equilibriumEconomics and EconometricsComparative staticsSupermodular gameEndogenous market structures05 social sciencesExistence of the equilibriumCournot competitionEntry preemptionSettore SECS-P/06 - Economia ApplicataCournot equilibriumMicroeconomicsMarket structure0502 economics and businessTheoretical methodsStackelberg competitionEconomics050207 economicsSettore SECS-P/01 - Economia PoliticaConvex functionFixed costMathematical economics050205 econometrics Research in Economics
researchProduct

Consistent shakedown theorems for materials with temperature dependent yield functions

2000

The (elastic) shakedown problem for structures subjected to loads and temperature variations is addressed in the hypothesis of elastic-plastic rate-independent associative material models with temperature-dependent yield functions. Assuming the yield functions convex in the stress/temperature space, a thermodynamically consistent small-deformation thermo-plasticity theory is provided, in which the set of state and evolutive variables includes the temperature and the plastic entropy rate. Within the latter theory the known static (Prager's) and kinematic (König's) shakedown theorems - which hold for yield functions convex in the stress space - are restated in an appropriate consistent format…

State variableApplied MathematicsMechanical EngineeringMathematical analysisStress spaceDuality (mathematics)Condensed Matter PhysicsUpper and lower boundsShakedownShakedownThermal-plasticityMechanics of MaterialsModeling and SimulationLimit loadGeneral Materials ScienceLimit state designCyclic loadingConvex functionSettore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct