Search results for "coordination complexes"

showing 10 items of 164 documents

Red-light-emitting electrochemical cell using a polypyridyl iridium(III) polymer.

2009

A deep-red phosphorescent ionic iridium(III) complex is prepared and incorporated into a polymer. Both the complex (1) and the polymer (2) were used as the single active material in solid-state light-emitting electrochemical cells (LECs). The devices built up using 1 and 2 emit in the deep-red region of the visible spectrum with CIE coordinates x = 0.710; y = 0.283 and x = 0.691; y = 0.289, respectively, making them one of the deepest-red emitting LECs reported. It is the first example of a polymeric LEC incorporating an ionic iridium complex, which exhibits increased stabilities compared with the device based on the small molecular weight complex.

chemistry.chemical_classificationMaterials scienceLuminescent MeasurementsLightPolymersIonic bondingchemistry.chemical_elementPolymerElectrochemical TechniquesPhotochemistryIridiumElectrochemical cellInorganic ChemistrychemistryCoordination ComplexesLuminescent MeasurementsIridiumRed lightPhosphorescenceVisible spectrumDalton transactions (Cambridge, England : 2003)
researchProduct

Cluster dirhenium(III) cis-dicarboxylates with α-amino acids ligands as mighty selective G4s binders.

2021

The synthesis of four dirhenium(III) cis-dicarboxylates with the α-amino acids residues Asp (I), Glu (II), Phe (III) and Tyr (IV) is presented. The G-quadruplex stabilization potential was evaluated by fluorescence resonance energy transfer - melting analysis. All derivatives show specific binding to c-kit1 quadruplex, while II and IV have also strong stabilization activity to HTelo21 quadruplex. At the same time, the compounds do not show any stabilization activity for ds26 DNA, which suggests unique mechanisms of molecular DNA recognition for these complexes.

chemistry.chemical_classificationMolecular StructureStereochemistrychemistry.chemical_elementDNARheniumG-quadruplexLigandsBiochemistryAmino acidInorganic ChemistryG-Quadruplexeschemistry.chemical_compoundFörster resonance energy transferRheniumchemistryCoordination ComplexesCluster (physics)Fluorescence Resonance Energy TransferHumansheterocyclic compoundsAmino AcidsDNADna recognitionJournal of inorganic biochemistry
researchProduct

Enantioselective self-assembly of antiferromagnetic hexacopper(ii) wheels with chiral amino acid oxamates

2013

The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.

chemistry.chemical_classificationTetramethylammoniumStereochemistryMagnetic PhenomenaMetals and AlloysEnantioselective synthesisStereoisomerismValineGeneral ChemistryLigandsCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmino acidchemistry.chemical_compoundchemistryCoordination ComplexesValineMaterials ChemistryCeramics and CompositesAntiferromagnetismSelf-assemblyCopperChemical Communications
researchProduct

Spin Switching with Triazolate-Strapped Ferrous Porphyrins

2019

Fe(III) porphyrins bridged with 1,2,3-triazole ligands were synthesized. Upon deprotonation, the triazolate ion coordinates to the Fe(III) ion, forming an overall neutral high-spin Fe(III) porphyrin in which the triazolate serves both as an axial ligand and as the counterion. The second axial coordination site is activated for coordination and binds p-methoxypyridine, forming a six-coordinate low-spin complex. Upon addition of a phenylazopyridine as a photodissociable ligand, the spin state of the complex can be reversibly switched with ultraviolet and visible light. The system provides the basis for the development of switchable catalase- and peroxidase-type catalysts and molecular spin sw…

chemistry.chemical_classificationkemiallinen synteesiSpin states010405 organic chemistryLigandkompleksiyhdisteet010402 general chemistry01 natural sciencesPorphyrin0104 chemical sciencesIonCatalysisInorganic Chemistrychemistry.chemical_compoundCrystallographyDeprotonationchemistrycoordination complexesPhysical and Theoretical ChemistryCounterionta116chemical synthesisVisible spectrumInorganic Chemistry
researchProduct

Oxidovanadium(v) complexes with l-proline-based amino acid phenolates

2019

Abstract l -proline was used to prepare chiral, tridentate amino acid phenol proligands H2L1–4. These proligands react with vanadium precursors VO(acac)2, VOSO4∙5H2O and VO(OPr)3 in methanol to form the corresponding oxidoalkoxidovanadium( v ) complexes 1–4. The complexes crystallize from methanol, and are octahedrally coordinated with a general formula [VO(L1–4)(OMe)(MeOH)]. In solution, however, they adopt several different conformations or isomeric structures depending on the solvent.

fenolitVanadiumchemistry.chemical_elementphenolsaminohapot010402 general chemistry01 natural sciencesMedicinal chemistryvanadiiniInorganic Chemistrychemistry.chemical_compoundMaterials ChemistryPhenolcoordination complexesProlinePhysical and Theoretical Chemistryta216ta116chemistry.chemical_classificationamino acids010405 organic chemistrykompleksiyhdisteet0104 chemical sciencesAmino acidSolventchemistryvanadiumMethanolInorganica Chimica Acta
researchProduct

Synthesis, Characterization, and Cu(2+) Coordination Studies of a 3-Hydroxy-4-pyridinone Aza Scorpiand Derivative.

2016

The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows …

inorganic chemicalsMagnetic Resonance SpectroscopyStereochemistryPyridinesPyridonesPotentiometric titrationProtonationChemistry Techniques Synthetic010402 general chemistry010403 inorganic & nuclear chemistryElectrochemistryCrystallography X-Ray01 natural sciencesMedicinal chemistryAntioxidantsCoordination complexInorganic Chemistrychemistry.chemical_compoundStructure-Activity RelationshipCoordination ComplexesHumansChelationPhysical and Theoretical ChemistryCell ProliferationChelating Agentschemistry.chemical_classificationLigandHydrogen-Ion Concentration0104 chemical scienceschemistryPotentiometrySpectrophotometry UltravioletCyclic voltammetryDerivative (chemistry)CopperHeLa CellsInorganic chemistry
researchProduct

Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes

2018

Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copperIJII) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…

kemialliset sidoksetcoordination complexeskompleksiyhdisteetchemical bonds
researchProduct

Insights into the decomposition pathway of a lutetium alkylamido complex via intramolecular C–H bond activation

2017

Synthesis, characterization and reaction chemistry of lutetium alkylamido LLu(CH2SiMe3)(NHCPh3) (2), L = 2,5-[Ph2P=N(4-iPrC6H4)]2N(C4H2)–, is reported. Complex 2 undergoes cyclometalation of the NHCPh3 ligand at elevated temperatures to produce the orthometalated complex LLu(κ2−N,C-(NHCPh2(C6H4))) (3) which converts to 0.5 equivalents of bis(amido) LLu(NHCPh3)2 (4) upon heating at 80 °C for 24 h. Reaction of complex 2 with 4-dimethylaminopyridine (DMAP) does not promote alkane elimination nor imido formation. A kinetic analysis of the thermal decomposition of complex 2, supported by deuterium labelling studies and computational analysis (PBE0/def2-TZVP/SDD(Lu)), indicate direct Csp2–H activ…

lutetiumcoordination complexeskompleksiyhdisteet
researchProduct

Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged MnIIILnIII Complexes : On the …

2018

A family of MnIIILnIII strictly dinuclear complexes of general formula [MnIII(μ-L)(μ-OMe)(NO3)LnIII(NO3)2(MeOH)] (LnIII = Gd, Dy, Er, Ho) has been assembled in a one pot synthesis from a polydentate, multipocket aminobis(phenol)ligand [6,6'-{(2-(1-morpholyl)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol)], Mn(NO3)2·4H2O, Ln(NO3)3· nH2O, and NEt3 in MeOH. These compounds represent the first examples of fully structurally and magnetically characterized dinuclear MnIIILnIII complexes. Single X-ray diffraction studies reveal that all complexes are isostructural, consisting of neutral dinuclear molecules where the MnIII and LnIII metal ions, which exhibit distorted octahedral MnN2O4 …

magneettiset ominaisuudet010405 organic chemistryChemistryAb initiokompleksiyhdisteet010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMagnetizationMagnetic anisotropyCrystallographyAb initio quantum chemistry methodsAntiferromagnetismMoleculecoordination complexesmagnetic propertiesPhysical and Theoretical ChemistryIsostructuralAnisotropyta116Inorganic Chemistry
researchProduct

Single-molecule magnet properties of a monometallic dysprosium pentalene complex

2018

The pentalene-ligated dysprosium complex [(η8-Pn†)Dy(Cp*)] (1Dy) (Pn† = [1,4-(iPr3Si)2C8H4]2−) and its magnetically dilute analogue are single-molecule magnets, with energy barriers of 245 cm−1. Whilst the [Cp*]− ligand in 1Dy provides a strong axial crystal field, the overall axiality of this system is attenuated by the unusual folded structure of the [Pn†]2− ligand. peerReviewed

magneettiset ominaisuudetMaterials sciencePentalenechemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisCrystalchemistry.chemical_compoundMaterials Chemistrycoordination complexesSingle-molecule magnetta116010405 organic chemistryLigandFolded structureMetals and AlloyskompleksiyhdisteetGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryMagnetCeramics and CompositesDysprosiummagnetic propertiesChemical Communications
researchProduct