Search results for "coro"

showing 10 items of 3650 documents

Magnetic shuffling of coronal downdrafts

2017

Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …

010504 meteorology & atmospheric sciencesField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsSun:corona01 natural sciencesAlfvén waveSettore FIS/05 - Astronomia E AstrofisicaPhysics::Plasma Physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar flareAstronomy and AstrophysicsSun:activityPlasmaMagnetic fluxAccretion (astrophysics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

2009

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…

010504 meteorology & atmospheric sciencesGas giantEvolutionAstrophysics01 natural sciencesArticleOriginPlanet0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsHot NeptuneKepler-10b010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsExoplanetsAstronomyAstronomy and AstrophysicsExoplanetCoRoT-7b13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMass lossPlanetary massJupiter massIce giantPlanetary and Space Science
researchProduct

Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011

2016

We present study of the complex event consisting of several solar wind transients detected by Advanced Composition Explorer (ACE) on 4 -- 7 August 2011, that caused a geomagnetic storm with Dst$=-$110 nT. The supposed coronal sources -- three flares and coronal mass ejections (CMEs) occurred on 2 -- 4 August 2011 in the active region (AR) 11261. To investigate the solar origin and formation of these transients we studied kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic fie…

010504 meteorology & atmospheric sciencesMHDSolar windAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics01 natural sciencesPhysics - Space PhysicsModelsIonization0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesGeomagnetic stormPhysicsAstronomy and Astrophysics3rd-DASPlasmaCoronaSpace Physics (physics.space-ph)Solar windQC PhysicsMagnetic field13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionsMagnetohydrodynamicsSolar Physics
researchProduct

The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture: A Current Global Perspective

2021

13 pages, 6 figures, 2 tables.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License

010504 meteorology & atmospheric sciencesNatural resource economicsSocio-ecological systemsvulnerabilityVulnerabilitySARS (Disease)01 natural sciencesFood security -- Case studiesStakeholder perceptionsCOVID-19 (Disease)Aquaculturefood insecurityStakeholderPerceptionsClimate changeZoologíastakeholders perceptions2. Zero hunger04 agricultural and veterinary sciencesSARS-COV2-pandemicmultiple stressorsFood insecurityclimate change2019-20 coronavirus outbreakCoronavirus disease 2019 (COVID-19)VulnerabilityClimate changesocio-ecological systemManagement Monitoring Policy and LawAquatic Science14. Life underwaterSARS-CoV-2 pandemic ; supply chain ; food insecurity ; climate change ; multiple stressors ; vulnerability ; stakeholder perceptions ; socioecological systemsMultiple stressorssupply chainEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesFood insecuritybusiness.industryPerspective (graphical)Stressorclimate change food insecurity multiple stressors SARS-CoV-2 pandemic socio-ecological systems stakeholder perceptions supply chain vulnerabilitySocioecological systemsVulnerability model of recoveryClimatic changesSupply chain13. Climate action040102 fisheriesBusiness logistics -- Case studies0401 agriculture forestry and fisheriesEnvironmental scienceSARS-CoV-2 pandemicbusiness
researchProduct

Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

2003

(Abridged) We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable. Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. A very large X-ray flare was observed in its entirety, with a peak luminosity of 3.9E28 erg/s [0.15-10 keV] and a total X-ray energy of 1…

010504 meteorology & atmospheric sciencesOpacityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsAstrophysics01 natural scienceslaw.inventionLuminositylaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsstars: activity stars: coronae stars: individual: Proxima Centauri X-rays: starsSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsSolar flareAstrophysics (astro-ph)Astronomy and AstrophysicsPlasma3. Good healthStars13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in Orion star-forming region

2018

Pulsing X-ray emission tracks the plasma echo traveling in an extremely long magnetic tube that flares in an Orion Pre-Main Sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (~20%) long-period (~3 hours) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer (ACIS) on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single l…

010504 meteorology & atmospheric sciencesSlosh dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsStar (graph theory)01 natural scienceslaw.inventionlaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsstars: formationTrack (disk drive)X-rayAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

Slow-Mode Magnetoacoustic Waves in Coronal Loops

2021

Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…

010504 meteorology & atmospheric sciencesSolar activityFOS: Physical sciencesSolar corona01 natural sciencesStanding wave0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesCoronal seismologyPhysicsOscillationOscillations and wavesAstronomy and AstrophysicsCoronal loopLight curveThermal conductionCoronal loopsComputational physicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

A space weather tool for identifying eruptive active regions

2019

Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…

010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsFOS: Physical sciencesSpace weather01 natural sciences3rd-NDASSolar coronal mass ejections0103 physical sciencesRegional sciencemedia_common.cataloged_instanceQB AstronomyEuropean union010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesmedia_commonQBPhysicsHorizon (archaeology)European researchAstronomy and AstrophysicsSolar active region magnetic fieldsSolar active regionsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Star-disk interaction in classical T Tauri stars revealed using wavelet analysis

2016

The extension of the corona of classical T Tauri stars (CTTS) is under discussion. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from Hydrodynamic modeling of X-ray flares observed in CTTS confirming the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevent the stellar corona to extent beyond the co-rotation radius, while others simply are not confident with the methods used to derive loop lengths. We use independent procedures to determine t…

010504 meteorology & atmospheric sciencesStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsContext (language use)Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOrion NebulaDifferential rotationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsCoronal seismologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Stellar atmosphereAstronomy and AstrophysicsCoronaT Tauri starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct