Search results for "corona"
showing 10 items of 3472 documents
Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton
2003
(Abridged) We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable. Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. A very large X-ray flare was observed in its entirety, with a peak luminosity of 3.9E28 erg/s [0.15-10 keV] and a total X-ray energy of 1…
X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in Orion star-forming region
2018
Pulsing X-ray emission tracks the plasma echo traveling in an extremely long magnetic tube that flares in an Orion Pre-Main Sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (~20%) long-period (~3 hours) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer (ACIS) on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single l…
Slow-Mode Magnetoacoustic Waves in Coronal Loops
2021
Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…
Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.
2021
Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…
A space weather tool for identifying eruptive active regions
2019
Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…
Star-disk interaction in classical T Tauri stars revealed using wavelet analysis
2016
The extension of the corona of classical T Tauri stars (CTTS) is under discussion. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from Hydrodynamic modeling of X-ray flares observed in CTTS confirming the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevent the stellar corona to extent beyond the co-rotation radius, while others simply are not confident with the methods used to derive loop lengths. We use independent procedures to determine t…
New Pre-Main Sequence Candidates in the Taurus-Auriga Star Forming Region
2007
Aims. We have studied the X-ray source population of the Taurus Molecular Cloud (TMC) to search for new members of the Taurus-Auriga star forming region. Methods. Candidate members have been selected among the X-ray sources detected in 24 fields of the XMM-Newton Extended Survey of the Taurus Molecular Cloud, having an IR counterpart in the 2MASS catalog, based on color-magnitude and color-color diagrams. Their X-ray spectral properties have been compared with those of known members and other X-ray sources in the same fields but without a NIR counterpart. A search for flare-like variability in the time series of all new candidates and the analysis of the X-ray spectra of the brightest candi…
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
2019
The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in the Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assem…
Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test
2018
Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…
Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85
2016
X-ray emission from Young Stellar Objects (YSOs) is crucial to understand star formation. A very limited amount of X-ray results is available for the protostellar (ClassI) phase. A systematic search of transient X-ray phenomena combined with a careful evaluation of the evolutionary stage offer a widely unexplored window to our understanding of YSOs X-ray properties. Within the EXTraS project, a search for transients and variability in the whole XMM-Newton archive, we discover transient X-ray emission consistent with ISO-Oph 85, a strongly embedded YSO in the rho Ophiuchi region, not detected in previous time-averaged X-ray studies. We extract an X-ray light curve for the flare and determine…