Search results for "corte"

showing 10 items of 2212 documents

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Enhanced Prefrontal Neuronal Activity and Social Dominance Behavior in Postnatal Forebrain Excitatory Neuron-Specific Cyfip2 Knock-Out Mice

2020

The cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) gene is associated with epilepsy, intellectual disability (ID), and developmental delay, suggesting its critical role in proper neuronal development and function. CYFIP2 is involved in regulating cellular actin dynamics and also interacts with RNA-binding proteins. However, the adult brain function of CYFIP2 remains unclear because investigations thus far are limited to Cyfip2 heterozygous (Cyfip2+/- ) mice owing to the perinatal lethality of Cyfip2-null mice. Therefore, we generated Cyfip2 conditional knock-out (cKO) mice with reduced CYFIP2 expression in postnatal forebrain excitatory neurons (CaMKIIα-Cre…

0301 basic medicineDendritic spinesocial dominanceBiologyFilamentous actinneuronal activitylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineexcitabilityCYFIP2Premovement neuronal activityPrefrontal cortexlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyBrief Research ReportFMR1030104 developmental biologyKnockout mouseForebrainExcitatory postsynaptic potentialNeurosciencemedial prefrontal cortex030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Measuring spectrally-resolved information transfer.

2020

Information transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate data in t…

0301 basic medicineDiscrete wavelet transformInformation transferComputer scienceEntropyInformation Theory0302 clinical medicineWaveletMathematical and Statistical TechniquesMedicine and Health SciencesBiology (General)Wavelet TransformsTemporal cortexMammalsEcologySystems BiologyApplied MathematicsSimulation and ModelingPhysicsWavelet transformMagnetoencephalographyEukaryotaBrainSignal FilteringComputational Theory and MathematicsModeling and SimulationPhysical SciencesVertebratesThermodynamicsEngineering and TechnologyWavelet transforms ; Algorithms ; Magnetoencephalography ; Information entropy ; Signal filtering ; Ferrets ; Permutation ; EntropyAnatomyAlgorithmInformation EntropyAlgorithmsResearch ArticleComputer and Information SciencesQH301-705.5PermutationWavelet AnalysisPrefrontal CortexResearch and Analysis Methods03 medical and health sciencesCellular and Molecular NeuroscienceGeneticsEntropy (information theory)AnimalsHumansInformation flow (information theory)Molecular BiologyEcology Evolution Behavior and SystematicsDiscrete MathematicsFerretsOrganismsBiology and Life Sciences030104 developmental biologyCombinatoricsSignal ProcessingAmniotesTransfer entropyZoologyMathematical Functions030217 neurology & neurosurgeryMathematicsPLoS computational biology
researchProduct

Melanin-concentrating hormone axons, but not orexin or tyrosine hydroxylase axons, innervate the claustrum in the rat: An immunohistochemical study

2016

The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of T…

0301 basic medicineExternal capsuleLateral hypothalamusTyrosine hydroxylaseGeneral NeuroscienceBiologyClaustrumMidbrain03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemCerebral cortexmedicineBrainstemNucleusNeurosciencehormones hormone substitutes and hormone antagonists030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

CNS Macrophages Control Neurovascular Development via CD95L.

2017

The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific del…

0301 basic medicineFas Ligand ProteinAngiogenesisMorphogenesisvesselmicrogliaBiologyGeneral Biochemistry Genetics and Molecular BiologyRetina03 medical and health sciencesangiogenesisMiceCell surface receptorExtracellularmedicineHuman Umbilical Vein Endothelial CellsNeuritesAnimalsHumansfas Receptorlcsh:QH301-705.5Cell ProliferationRetinaMicrogliaKinaseMacrophagesneurovascular developmentBrainNeurovascular bundle030104 developmental biologymedicine.anatomical_structurecortexsrc-Family Kinasesnervous systemlcsh:Biology (General)ImmunologySynapsesCD95CD95LNeuroscienceCNS macrophagesProtein BindingSignal TransductionCell reports
researchProduct

A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction

2019

Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor express…

0301 basic medicineFood addictionSciencemedicine.medical_treatmentPrefrontal CortexAddictionGeneral Physics and AstronomyNucleus accumbensNeurotransmissionBiologySynaptic TransmissionNucleus AccumbensArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesGlutamatergic0302 clinical medicineReceptor Cannabinoid CB1Dopamine receptor D2Behavioural genetics ; AddictionNeural Pathwaysmental disordersmedicineAnimalsPremovement neuronal activitylcsh:SciencePrefrontal cortexMice KnockoutMultidisciplinaryReceptors Dopamine D2Gene Expression ProfilingQdigestive oral and skin physiologyFeeding BehaviorGeneral ChemistryUp-RegulationDisease Models Animal030104 developmental biologyGene Expression RegulationBehavioural geneticslcsh:QFood AddictionCannabinoidNeuroscience030217 neurology & neurosurgery
researchProduct

Taurine as an Essential Neuromodulator during Perinatal Cortical Development

2017

A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurode…

0301 basic medicineGABA receptorsTaurineCentral nervous systemReviewBiologymigrationlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineCajal–Retzius cellsmedicinePremovement neuronal activityGlycine receptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeocortexGABAA receptorglycine receptorsNeurogenesisGlutamate receptorrodent030104 developmental biologymedicine.anatomical_structurechemistrynervous systemsubplatecerebral cortexNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

Polysialic Acid Acute Depletion Induces Structural Plasticity in Interneurons and Impairs the Excitation/Inhibition Balance in Medial Prefrontal Cort…

2016

The structure and function of the medial prefrontal cortex (mPFC) is affected in several neuropsychiatric disorders, including schizophrenia and major depression. Recent studies suggest that imbalances between excitatory and inhibitory activity (E/I) may be responsible for this cortical dysfunction and, therefore, may underlie the core symptoms of these diseases. This E/I imbalance seems to be correlated with alterations in the plasticity of interneurons but there is still scarce information on the mechanisms that may link these phenomena. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate, because it modulates the neuronal plasticity of interneurons…

0301 basic medicineGenetically modified mousePSA-NCAMneuronal structural plasticityInhibitory postsynaptic potential03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineE/I balanceNeuroplasticitymedicinePrefrontal cortexOriginal ResearchPolysialic acidmusculoskeletal neural and ocular physiologymedicine.diseaseschizophreniamPFC cultures030104 developmental biologynervous systemSchizophreniaExcitatory postsynaptic potentialNeural cell adhesion moleculemajor depressionPsychologyNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Piriform cortex alterations in the Ts65Dn model for down syndrome

2020

The piriform cortex is involved in olfactory information processing, that is altered in Down Syndrome. Moreover, piriform cortex has a crucial involvement in epilepsy generation and is one of the first regions affected in Alzheimer's Disease, both maladies being prevalent among Down Syndrome individuals. In this work, we studied the alterations in neuronal morphology, synaptology and structural plasticity in the piriform cortex of the Ts65Dn mouse model, which is the most used model for the study of this syndrome and mimics some of their alterations. We have observed that Ts65Dn piriform cortex displays: a reduction in dendritic arborisation, a higher density of inhibitory synapses (GAD67),…

0301 basic medicineGlutamate decarboxylasePresynaptic TerminalsMice TransgenicPiriform CortexInhibitory postsynaptic potentialMice03 medical and health sciences0302 clinical medicineAtrophyPostsynaptic potentialPiriform cortexmedicineNeuropilAnimalsMolecular BiologyNeuronsGephyrinbiologyGlutamate DecarboxylaseGeneral NeuroscienceMembrane Proteinsmedicine.disease030104 developmental biologymedicine.anatomical_structurenervous systemVesicular Glutamate Transport Protein 1biology.proteinExcitatory postsynaptic potentialNeurology (clinical)Down SyndromeNeuroscience030217 neurology & neurosurgeryDevelopmental BiologyBrain Research
researchProduct