Search results for "crystals"

showing 10 items of 350 documents

Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT

2006

Size-controlled gold nanoparticles/surfactant stable systems were prepared by the combined action of the solvated metal atom dispersion (SMAD) technique and confinement in anhydrous sodium bis(2-ethylhexyl)sulfosuccinate (AOT) micellar solution. From liquid samples, by evaporation of the organic solvent, solid gold nanoparticle-surfactant liquid crystals composites were obtained. Sample characterization was performed by X-ray diffraction (SAXS and WAXS), XPS spectroscopy and UV-vis-NIR spectroscopy. All experimental data consistently revealed the coexistence of two gold nanoparticle size populations: bigger nanoparticles (size 20-50 angstrom) and smaller ones (size of few angstrom). The two…

Materials scienceNanostructureNanocompositereversed micelleSmall-angle X-ray scatteringInorganic chemistryNanoparticleCondensed Matter PhysicsMicelleAdsorptionliquid crystalsPulmonary surfactantColloidal goldGeneral Materials ScienceAOTgold nanoparticleSMAD
researchProduct

The Single Molecule Probe: Nanoscale Vectorial Mapping of Photonic Mode Density in a Metal Nanocavity

2009

International audience; We use superresolution single-molecule polarization and lifetime imaging to probe the local density of states (LDOS) in a metal nanocavity. Determination of the orientation of the molecular transition dipole allows us to retrieve the different LDOS behavior for parallel and perpendicular orientations with respect to the metal interfaces. For the perpendicular orientation, a strong lifetime reduction is observed for distances up to 150 nm from the cavity edge due to coupling to surface plasmon polariton modes in the metal. Contrarily, for the parallel orientation we observe lifetime variations resulting from coupling to characteristic λ/2 cavity modes. Our results are…

Materials scienceNanostructurePolymersMICROCAVITYBiophysicsMetal NanoparticlesPhysics::OpticsBioengineering02 engineering and technologyLIFETIME01 natural sciencesENHANCEMENT0103 physical sciencesMaterials TestingNanotechnologyGeneral Materials ScienceSpontaneous emission[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPhotons[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Local density of states[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsMechanical EngineeringSurface plasmonFLUORESCENCE MICROSCOPYSPONTANEOUS EMISSIONGeneral ChemistryEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)Surface plasmon polaritonCRYSTALSDipoleMicroscopy FluorescenceMetalsDensity of statesMicroscopy Electron Scanning[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyNEAR-FIELD
researchProduct

Characterization of different regimes in nonlinear liquid crystal models

2012

[EN] The range of validity of two models for nonlocal nonlinear optics in Nematic Liquid Crystals (NLC) is studied. Particularly the influence of the optical power and the initial position of the beam over its trajectory is studied when launching the beam with an offset in a planar cell. The main difference between both models is the dependence of the orientational angle with the optical field, either linear or nonlinear. The results demonstrate the critical role of the nonlinearity in the propagation of nematicons in NLC planar cells. © 2012 World Scientific Publishing Company.

Materials scienceOffset (computer science)Nonlinear opticsPhysics and Astronomy (miscellaneous)Condensed matter physicsbusiness.industryNonlinear opticsOptical powerOptical fieldAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsLiquid CrystalsNonlinear systemOpticsPlanarLiquid crystalNematicsPhysics::Accelerator PhysicsbusinessMATEMATICA APLICADA
researchProduct

Advances in solution-processed near-infrared light-emitting diodes

2021

A summary of recent advances in the near-infrared light-emitting diodes that are fabricated by solution-processed means, with coverage of devices based on organic semiconductors, halide perovskites and colloidal quantum dots.

Materials scienceOptical communicationPhysics::Opticsquantum dotsNanotechnologyelectroluminescenceamplified spontaneous emissionCondensed Matter::Materials SciencenanocrystalsNight visionluminescenceMaterialsperovskiteDiodecomplexesNear infrared lightbusiness.industrydiffusionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSolution processedOrganic semiconductorImproved performanceSemiconductorhighly efficientLàsers de colorantsbusinessdevices
researchProduct

Space charge limited current mechanism in Bi2S3 nanowires

2016

We report on the charge transport properties of individual Bi2S3 nanowires grown within the pores of anodized aluminum oxide templates. The mean pore diameter was 80 nm. Space charge limited current is the dominating conduction mechanism at temperatures below 160 K. Characteristic parameters of nanowires, such as trap concentration and trap characteristic energy, were estimated from current-voltage characteristics at several temperatures.

Materials scienceOxideNanowireGeneral Physics and AstronomyNanotechnology02 engineering and technologyBi2S3 nanowires010402 general chemistry01 natural sciencesCrystalsSpace chargeSemiconductor materialschemistry.chemical_compoundElectrical resistivity and conductivityElectrical conductivityPorosityArraysCharacteristic energyAnodizingNanowiresMemristor021001 nanoscience & nanotechnologyThermal conductionSpace charge0104 chemical scienceschemistryChemical physics0210 nano-technologyPorosityBismuth compounds
researchProduct

Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended …

2019

Two different sets of ionic liquid crystals based on bistriflimide salts of non-symmetrically substituted polyfluorinated bipyridinium (viologens) and bent symmetrically substituted dialkyl-oxadiazolyl-bipyridinium have been synthesized, in order to study the effect on the mesomorphic and electrooptical properties of the non-symmetric functionalization (alkyl chain and fluoroalkyl chains of different lengths) on the two pyridinium rings and additionally the effect of a bent conjugated spacer among the two pyridinium units of the viologen. POM and DSC characterization show that the synthesized salts have a mesomorphic and, in some cases, polymesomorphic behaviour in a wide thermal range, als…

Materials sciencePHASEATALUREN02 engineering and technologySALTS010402 general chemistry01 natural scienceschemistry.chemical_compoundMaterials ChemistrymedicineBistriflimideionic liquid crystals viologens fluoroalkyl chainsviologensfluoroalkyl chainsAlkylSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationREADTHROUGHDERIVATIVESIONIC LIQUID-CRYSTALSMesophaseViologenGeneral ChemistrySettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyREDUCTIONRadical ionchemistryElectrochromismIonic liquidCOMPLEXESPyridiniumionic liquid crystalsPOLYMERS0210 nano-technologyCOLUMNARmedicine.drug
researchProduct

High-Pressure Softening of the Out-of-Plane A2u(Transverse-Optic) Mode of Hexagonal Boron Nitride Induced by Dynamical Buckling

2019

We investigate the highly anisotropic behavior of the in-plane and out-of-plane infrared-active phonons of hexagonal boron nitride by means of infrared reflectivity and absorption measurements under high pressure. Infrared reflectivity spectra at normal incidence on high-quality single crystals show strict fulfillment of selection rules and an unusually long E1u[transverse-optic (TO)] phonon lifetime. Accurate values of the dielectric constants at ambient pressure ϵ0= 6.96, ϵ∞= 4.95, ϵ 0= 3.37, and ϵ∞ = 2.84 have been determined from fits to the reflectivity spectra. The out-of-plane A2u phonon reflectivity band is revealed in measurements on an inclined facet, and absorption measurements a…

Materials sciencePhononReflectionAstrophysics::Cosmology and Extragalactic Astrophysics02 engineering and technologyNitride010402 general chemistry01 natural sciencesNitridesCondensed Matter::Materials Sciencechemistry.chemical_compoundCondensed Matter::SuperconductivityPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)AnisotropySofteningAstrophysics::Galaxy AstrophysicsCondensed matter physics021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBoron nitrideTransverse planeGeneral EnergychemistryBucklingBoron nitride[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]CalculationsIII-V semiconductorsPhononsSingle crystalsAstrophysics::Earth and Planetary Astrophysics0210 nano-technology
researchProduct

Photoconductivity and photovoltaic effect in indium selenide

1983

Transport and phototransport properties of crystalline indium monoselenide (InSe) doped with a variety of elements are reported. Measured mobilities, lifetimes, and effective diffusion lengths of photoexcited carriers are used to interpret electrical and photovoltaic properties of several different structures. These include p‐n junctions, bismuth/p‐type InSe, platinum/n‐type InSe, and indium tin oxyde (ITO)/p‐type InSe. External solar efficiencies of the best devices are between 5% and 6%. The influence on the efficiency of the various parameters is evaluated, and ways of improvement are discussed.

Materials sciencePhotoconductivityInorganic chemistryN−Type ConductorsGeneral Physics and Astronomychemistry.chemical_elementPhotovoltaic effectIndium CompoundsEfficiencyCrystalsBismuthPhotovoltaic EffectCharge Carrierschemistry.chemical_compoundP−Type ConductorsIndium Selenides ; Photoconductivity ; Photovoltaic Effect ; Experimental Data ; Crystals ; Doped Materials ; Mobility ; Lifetime ; Diffusion Length ; Charge Carriers ; Electrical Properties ; P−N Junctions ; P−Type Conductors ; N−Type Conductors ; Bismuth ; Platinum ; Indium Compounds ; Tin Oxides ; Efficiency:FÍSICA [UNESCO]SelenideDoped MaterialsPlatinumMobilityIndium Selenidesbusiness.industryPhotoconductivityElectrical PropertiesDopingP−N JunctionsUNESCO::FÍSICATin OxidesDiffusion LengthchemistryOptoelectronicsExperimental DataCharge carrierTinbusinessBismuthIndiumLifetime
researchProduct

Single step deposition of an interacting layer of a perovskite matrix with embedded quantum dots

2016

Hybrid lead halide perovskite (PS) derivatives have emerged as very promising materials for the development of optoelectronic devices in the last few years. At the same time, inorganic nanocrystals with quantum confinement (QDs) possess unique properties that make them suitable materials for the development of photovoltaics, imaging and lighting applications, among others. In this work, we report on a new methodology for the deposition of high quality, large grain size and pinhole free PS films (CH3NH3PbI3) with embedded PbS and PbS/CdS core/shell Quantum Dots (QDs). The strong interaction between both semiconductors is revealed by the formation of an exciplex state, which is monitored by p…

Materials sciencePhotoluminescenceBand gapNanotechnology02 engineering and technologyElectroluminescence010402 general chemistry01 natural scienceslaw.inventionnanocrystalslawPhotovoltaicsGeneral Materials SciencePerovskite (structure)business.industrylight-emitting-diodes021001 nanoscience & nanotechnology0104 chemical sciencesphotovoltaicslead halide perovskitesolar-cellsSemiconductorefficiencyQuantum dotOptoelectronics0210 nano-technologybusinessperformanceLight-emitting diodeNanoscale
researchProduct

Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr 3 Perovskite Nanocrystals

2021

Reabsorption and reemission of photons, or photon recycling (PR) effect, represents an outstanding mechanism to enhance the carrier and photon densities in semiconductor thin films. This work demonstrates the propagation of recycled photons over several mm by integrating a thin film of CsPbBr3 nanocrystals into a planar waveguide. An experimental set-up based on a frequency modulation spectroscopy allows to characterize the PR effect and the determination of the effective decay time of outcoupled photons. A correlation between the observed photoluminescence redshift and the increase of the effective decay time is demonstrated, which grows from 3.5 to near 9 ns in the best device. A stochast…

Materials sciencePhotonMonte-Carlo modelingbusiness.industryPhoton recyclingMonte Carlo methodPhysics::Optics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCsPbBr3 nanocrystals frequency modulation spectroscopy Monte-Carlo modeling photon recycling waveguidesNanocrystalOptoelectronicsFrequency modulation spectroscopy0210 nano-technologybusinessCsPbBr3Frequency modulation spectroscopyWaveguidesPhoton recyclingPerovskite (structure)Advanced Optical Materials
researchProduct