Search results for "current density"
showing 10 items of 99 documents
Hybrid organic-inorganic light emitting diodes: effect of the metal oxide
2010
Hybrid organic-inorganic light emitting diodes (HyLEDs), employing metal oxides as the electron injecting contacts, are interesting as an alternative to OLEDs. Until recently, the metal oxide of choice was either titanium dioxide or zinc oxide. In this work two wide bandgap metal oxides, HfO2 and MgO, are employed as electron injecting layer in HyLEDs. It is demonstrated that both the current density and the luminance values obtained are directly related to the barriers for electron injection (from the ITO to the metal oxide) and for hole transfer to the same metal oxide, outlining a new design rule for the optimization of HyLEDs. Record device efficacies (3.3 cd/A, >10000 cd/m2) using the …
Two-terminal nanoelectromechanical devices based on germanium nanowires.
2009
A two-terminal bistable device, having both ON and OFF regimes, has been demonstrated with Ge nanowires using an in situ TEM-STM technique. The function of the device is based on delicately balancing electrostatic, elastic, and adhesion forces between the nanowires and the contacts, which can be controlled by the applied voltage. The operation and failure conditions of the bistable device were investigated, i.e. the influence of nanowire diameter, the surface oxide layer on the nanowires and the current density. During ON/OFF cycles the Ge nanowires were observed to be more stable than carbon nanotubes, working at similar conditions, due to the higher mechanical stability of the nanowires. …
Millisecond radiative recombination in poly(phenylene vinylene)-based light-emitting diodes from transient electroluminescence
2007
The current and electroluminescence transient responses of standard poly phenylene vinylene -based light-emitting devices have been investigated. The electroluminescence time response is longer milliseconds scale than the current switch-off time by more than one order of magnitude, in the case of small area devices 0.1 cm2 . For large area devices 6 cm2 the electroluminescence decay time decreases from 1.45 ms to 100 s with increasing bias voltage. The fast current decay limits the electroluminescence decay at higher voltages. Several approaches are discussed to interpret the observed slow decrease of electroluminescence after turning off the bias. One relies upon the Langevin-type bimolecu…
Investigation of Critical Points of Pore Formation Voltage on the Surface of Semiconductors of A3B5 Group
2021
In this work, critical values of pore-formation in electrochemical machining of semiconductors of A 3 B 5 group are studied. On the example of indium phosphide, the indicators of the series of dependence of current density on the voltage of anodization are studied. The rates of current density increase in the regime of gradual rise of anodization voltage are determined. According to these indicators, the intervals are established, within which the active pore-formation occurs on the surface of semiconductor.
Magnetization relaxation in the flux-creep annealing regime across the second magnetization peak of disordered YBa2Cu3O7− crystals
2001
Abstract The relaxation of the irreversible magnetization of disordered YBa 2 Cu 3 O 7− x crystals measured in the “flux-creep annealing” regime reveals that across the second magnetization peak (SMP) the barriers against flux motion remain finite at low current densities, which supports the existence of a crossover to a dissipation process involving the plastic deformation of the vortex system. In our experiments, the vortex creep process appears to be exclusively controlled by collective pinning barriers (diverging at low current densities) only below the onset of the SMP, where the vortex system is stable against dislocation formation. The (elastic) collective pinning barriers observed f…
Inhibition of the detrimental double vortex-kink formation in thick YBa2Cu3O7films with BaZrO3nanorods
2013
We investigated the temperature (T) variation of the normalized magnetization relaxation rate S and of the corresponding normalized vortex-creep activation energy U* = T/S for YBa2Cu3O7 films containing BaZrO3 nanorods, with the external magnetic field H oriented perpendicular to the film surface. It was found that by increasing the film thickness and using nanodot decorated substrates the high-T S(T) maximum appearing at low H is substituted by a minimum in S(T). As revealed by the analysis of the current density dependence of U*, this behaviour is due to the inhibition of vortex excitations involving double vortex-kinks and superkinks formation in the investigated thick films, owing to th…
Electrical switching of perpendicular magnetization in a single ferromagnetic layer
2020
We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…
Capacitance study of thin film SnO2:F/p-type a-Si:H heterojunctions
2011
Abstract We characterized SnO 2 :F/p-type a-Si:H heterojunctions by current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature to determine the junction parameters. Samples with circular geometry and different diameters were characterized. The current scales with the junction area, and the current density J as a function of the voltage V is a slightly asymmetric curve with a super-linear behaviour (cubic law) for high voltages. Using a transmission line model valid for devices with circular geometry, we studied the effects of the SnO 2 :F resistivity on the measured capacitance when the SnO2:F layer works as an electrical contact. The measured C-V curve allows us t…
Reduction of oxygen to H2O2 at carbon felt cathode in undivided cells. Effect of the ratio between the anode and the cathode surfaces and of other op…
2019
Abstract In the last years, the electrochemical conversion of oxygen to hydrogen peroxide at carbon felt has been largely studied in order to define a new route for the production of H2O2 and to optimize the electro-Fenton process, which is based on the cathodic generation of H2O2. In particular, many studies regarding electro-Fenton process were carried out in undivided cells in order to avoid the costs of the separator and to reduce the cell potentials. Hence, in order to optimize the cathodic conversion of oxygen to H2O2 in undivided cells, the effect of many parameters linked to the anodic process were here evaluated. In particular, it was demonstrated that the performances of the proce…
Relaxation of remnant magnetisation in YBa2Cu3O7−δ films
2007
Abstract The relaxation of the remnant magnetisation in optimally doped disk-shaped YBa2Cu3O7−δ films with the initially applied magnetic field H oriented along the c axis was measured using dc SQUID magnetometry. The temperature (T) dependence of the experimentally observed normalised magnetisation relaxation rate S exhibits three distinct regions. At high T, S(T) increases with increasing T, which can be explained in terms of plastic vortex creep. The well known plateau in the S(T) variation at intermediate T appears to be caused by collective (elastic) creep in a dynamically ordered vortex system. At low T, where S increases again with increasing T, the magnetisation relaxation is not in…