Search results for "current"

showing 10 items of 2224 documents

Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy

2020

We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsNucleation02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonMagnetic fieldMagnetization[SPI]Engineering Sciences [physics]Domain wall (magnetism)Hall effect0103 physical sciencesIrradiation0210 nano-technologyCurrent densityComputingMilieux_MISCELLANEOUS
researchProduct

3D magnetic and thermal fields for in the transformer with homogenised amorphous C-core under high frequency

2017

010302 applied physicsMaterials sciencebusiness.industry020208 electrical & electronic engineeringElectrical engineering02 engineering and technology01 natural sciencesAmorphous solidlaw.inventionlaw0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringEddy currentAmorphous metal transformerElectrical and Electronic EngineeringComposite materialbusinessTransformerPRZEGLĄD ELEKTROTECHNICZNY
researchProduct

2018

Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…

010302 applied physicsMaterials sciencebusiness.industryDirect currentSurface plasmonPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDrude modelSurface plasmon polaritonAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceOpticschemistryElectrical resistivity and conductivityPhysical vapor deposition0103 physical sciencesOptoelectronics0210 nano-technologybusinessTinPlasmonOptics Express
researchProduct

Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes

2019

We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…

010302 applied physicsMaterials sciencebusiness.industryGallium nitrideHeterojunction01 natural sciencesSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistrylawPhase (matter)0103 physical sciencesElectrodeOptoelectronicsNanorodChemical-bath deposition (CBD) contact injection current spreading length zinc oxide (ZnO) nanorods ZnO/GaN-based light-emitting diodes (LEDs) ZnO/GaN heterostructures.Electrical and Electronic EngineeringbusinessWurtzite crystal structureLight-emitting diodeDiode
researchProduct

Electrical Modeling of Monolithically Integrated GMR Based Current Sensors

2018

We report on the electrical compact model, using Verilog-A, of a monolithically integrated giant magnetoresistance (GMR) based electrical current sensors. For this purpose, a specifically designed ASIC (AMS $0.35\mu \mathrm{m}$ technology) has been considered, onto which such sensors have been patterned and fabricated, following a two-steps procedure. This work is focused on the DC regime model extraction, giving evidences of its good performance and stating the bases for subsequent model improvements.

010302 applied physicsModel extractionMaterials sciencebusiness.industry010401 analytical chemistryElectrical engineeringGiant magnetoresistance01 natural sciences0104 chemical sciencesElectrical currentApplication-specific integrated circuit0103 physical sciencesHardware design languagesCurrent (fluid)business2018 Spanish Conference on Electron Devices (CDE)
researchProduct

Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics

2010

Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…

010302 applied physicsPermittivityMaterials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistryEquivalent oxide thickness02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionElectric field0103 physical sciencesMaterials ChemistryElectrochemistry0210 nano-technologyCurrent densityLeakage (electronics)High-κ dielectricJournal of The Electrochemical Society
researchProduct

Dielectric properties of potassium–sodium niobate ceramics at low frequencies

2016

ABSTRACTA study of the effects of ageing history on the electrical properties of lead-free ferroelectric ceramics of (K0.5Na0.5)(Nb1−xSbx)O3 + 0.5 mol% MnO2 and (K0.5Na0.5)(Nb1−xTax)O3 + 0.5 mol%MnO2 for x = 0.05 is reported. The samples after storage at a constant temperature have been subject to infra-low-frequency electric field and radiation. Differences of the photoelectric response between the two examined compounds were found and the restoration of polarisation in the aged ceramic materials by cycles of applied field is discussed.

010302 applied physicsPhotocurrentMaterials sciencebusiness.industryFerroelectric ceramicsAnalytical chemistry02 engineering and technologyDielectricPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityOpticsvisual_artElectric field0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceIrradiationCeramic0210 nano-technologybusinessInstrumentationPhase Transitions
researchProduct

Luminescence dynamics of hybrid ZnO nanowire/CdSe quantum dot structures

2016

Colloidal CdSe quantum dots (QDs) functionalized with different organic linker molecules are attached to ZnO nanowires (NWs) to investigate the electron transfer dynamics between dots and wires. After linking the quantum dots to the nanowires, the photo-induced electron transfer (PET) from the QDs into the NWs becomes visible in the PL transients by a decrease of dot luminescence decay time. The different recombination paths inside the QDs and the PET process are discussed in the framework of a rate equation model. Photoconductivity studies confirm the electron transfer by demonstrating a strong enhancement of the wire photocurrent under light irradiation into the dot transition. (© 2016 WI…

010302 applied physicsPhotocurrentPhotoluminescenceMaterials sciencebusiness.industryPhotoconductivityNanowire02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectron transferQuantum dot0103 physical sciencesOptoelectronics0210 nano-technologybusinessLuminescencephysica status solidi c
researchProduct

The Role of Right Interpretation of Space Charge Distribution for Optimized Design of HVDC Cables

2019

In the field of high-voltage transmission systems, different degradation phenomena affect the reliability of the employed components. In particular, under dc stress, the space charge accumulation phenomenon is believed to be the most responsible of the dielectrics lifetime reduction. To measure the accumulated space charges in flat specimens, the pulsed electro-acoustic (PEA) method is one of the most used techniques. The working principle of the PEA cell is based on the acoustic waves propagation and detection. As is well known, the acoustic waves propagating in different means are partially transmitted and partially reflected. Therefore, the piezoelectric sensor of the PEA cell is subject…

010302 applied physicsPhysicsField (physics)Piezoelectric sensorPEA method020208 electrical & electronic engineeringhigh-voltage direct-current (HVdc)Charge (physics)modeling02 engineering and technologyMechanicsAcoustic wave01 natural sciencesSpace chargeSignalFinite-difference time-domain (FDTD) methodIndustrial and Manufacturing EngineeringSettore ING-IND/31 - ElettrotecnicaControl and Systems Engineering0103 physical sciences0202 electrical engineering electronic engineering information engineeringReflection (physics)space chargeSurface chargeElectrical and Electronic Engineering
researchProduct

Analytical induced force solution in conducting cylindrical bodies and rings due to a rotating finite permanent magnet

2020

Abstract Using exact expression of the magnetic field we derive analytical expression for the induced current density and volume force in a solid conducting cylinder and ring due to a coaxial rotating finite permanent magnet with transverse magnetization. The integral torque is calculated from these expressions and validated with numerical and experimental results. Conditions for useful magnetic field approximations are found.

010302 applied physicsPhysicsRing (mathematics)02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldMagnet0103 physical sciencesCylinderTorqueCoaxial0210 nano-technologyAxial symmetryCurrent densityJournal of Magnetism and Magnetic Materials
researchProduct