Search results for "ddc:54"

showing 10 items of 218 documents

Phase Stability of Lanthanum Orthovanadate at High Pressure

2016

The journal of physical chemistry / C 120(25), 13749 - 13762(2016). doi:10.1021/acs.jpcc.6b04782

Phase transitionAtomsPhononFOS: Physical scienceschemistry.chemical_elementCrystal atomic structure02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesMolecular physicssymbols.namesakeCondensed Matter::Materials ScienceAb initio quantum chemistry methodsPhase (matter)Physics - Chemical PhysicsLanthanumPhysical and Theoretical ChemistryAtoms; Calculations; Crystal atomic structureChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceChemistryMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology5400104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral Energyddc:540symbols0210 nano-technologyRaman spectroscopyCalculationsMonoclinic crystal system
researchProduct

Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds

1999

In iron(II) spin-crossover compounds, the transition from the 1A1 low-spin state at low temperatures to the 5T2 high-spin state at elevated temperatures is accompanied by a large increase in metal-ligand bond lengths. The resulting elastic interactions may be pictured as an internal pressure which is proportional to the concentration of the low-spin species. Because pressure stabilises the low-spin state relative to the high-spin state this results in a positive feedback. Thermal transition curves in neat iron(II) spin-crossover compounds are thus invariable much steeper than in diluted mixed crystals, and the high-spin→low-spin relaxation following the light-induced population of the high-…

Phase transitioneducation.field_of_studyCooperative effectsCondensed matter physicsBistabilityChemistryRelaxation (NMR)PopulationInternal pressureIron(II) coordination compoundsLIESSTInorganic ChemistryChemical physicsSpin crossoverddc:540Materials ChemistryHigh-spinlow-spin relaxationCondensed Matter::Strongly Correlated ElectronsBistabilityPhysical and Theoretical ChemistrySpin-crossoverGround stateeducationCoordination Chemistry Reviews
researchProduct

NMR enantiodifferentiation of triphenylphosphonium salts by chiral hexacoordinated phosphate anions

2003

BINPHAT anion—rather than TRISPHAT—is an efficient NMR chiral shift reagent for triphenylphosphonium salts containing stereogenic centers on the aliphatic side-chain. BINPHAT—rather than TRISPHAT—anion is an efficient NMR (1H and 31P) chiral shift reagent for chiral triphenylphosphonium salts.

Phosphonium saltsBINPHATChiral anionsOrganic ChemistryTRISPHATPhosphateBiochemistryStereocenterchemistry.chemical_compoundNMR enantiodifferentiationTRISPHATchemistryReagentddc:540Drug DiscoveryAmino acids and derivativesOrganic chemistryTetrahedron Letters
researchProduct

A theoretical study of the lowest electronic states of azobenzene: the role of torsion coordinate in the cis-trans photoisomerization

2003

In the present paper we report the results of a multiconigurational computational study on potential- energy curves of azobenzene along the NN twisting to clarify the role of this coordinate in the decay of the S2(pp*) and S1(np*) states. We have found that there is a singlet state, S3 at the trans geometry, on the basis of the doubly excited coniguration n 2 p* 2 , that has a deep minimum at about 90 of twisting, where it is the lowest excited singlet state. The existence of this state provides an explanation for the short lifetime of S2(pp*) and for the wavelength-dependence of azobenzene photochem- istry. We have characterized the S1(np*) state by calcu- lating its vibrational frequencie…

PhotoisomerizationAzobenzeneMulticonfigurational wave function methodschemistry.chemical_compoundsymbols.namesakeAzobenzenechemistryExcited statePhotoisomerizationddc:540symbolsDensity functional theoryExcited electronic statesSinglet statePhysical and Theoretical ChemistryAtomic physicsRaman spectroscopyIsomerizationCis–trans isomerism
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct

The design and performance of IceCube DeepCore

2011

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAntarticaGeneratorAstrophysicsNeutrino telescope01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryAntarctica; DeepCore; Detector; IceCube; NeutrinoIceCubeHigh Energy Physics - Experiment (hep-ex)WIMP0103 physical sciencesNeutrino010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsMuon010308 nuclear & particles physicsIceICEAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsDetectorInstrumentation and Detectors (physics.ins-det)GENERATORDeepCoreSupernovaAir showerPhysics and AstronomyNeutrino detector13. Climate actionddc:540AntarcticaHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Monte Carlo simulation of the Borexino detector

2017

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readout
researchProduct

Taming conformational heterogeneity in and with vibrational circular dichroism spectroscopy

2019

Chemical science 10, 7680 -7689 (2019). doi:10.1039/C9SC02866H

PhysicsFlexibility (engineering)FELIX Condensed Matter PhysicsQuantitative Biology::Biomolecules/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy010405 organic chemistryMolecular and BiophysicsGeneral ChemistryFunction (mathematics)540010402 general chemistry01 natural sciencesSpectral line3. Good health0104 chemical sciencesHighly sensitiveChemistryddc:540Vibrational circular dichroismStatistical physicsSDG 7 - Affordable and Clean EnergySpectroscopyConformational isomerismReliability (statistics)
researchProduct

Local properties of quantum chemical systems: the LoProp approach.

2004

A new method is presented, which makes it possible to partition molecular properties like multipole moments and polarizabilities, into atomic and interatomic contributions. The method requires a subdivision of the atomic basis set into occupied and virtual basis functions for each atom in the molecular system. The localization procedure is organized into a series of orthogonalizations of the original basis set, which will have as a final result a localized orthonormal basis set. The new localization procedure is demonstrated to be stable with various basis sets, and to provide physically meaningful localized properties. Transferability of the methyl properties for the alkane series and of t…

Polarisabilitybusiness.industryChemistryGeneral Physics and AstronomyBasis functionQuantum chemistryQuantum mechanicsddc:540Theoretical chemistryPhysics::Atomic and Molecular ClustersPartition (number theory)Molecular momentsOrthonormal basisStatistical physicsSet theoryPhysical and Theoretical ChemistrybusinessMultipole expansionQuantum chemistryBasis setSubdivisionThe Journal of chemical physics
researchProduct