Search results for "defects"

showing 10 items of 339 documents

Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments

2008

International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…

Nuclear and High Energy PhysicsMaterials scienceoptical fibersAb initio02 engineering and technology01 natural sciencesMolecular physicslaw.inventionlawAb initio quantum chemistry methods0103 physical sciencesAtomElectrical and Electronic Engineeringdensity functionalElectron paramagnetic resonancetheorydefects010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceAmorphous solidBond lengthNuclear Energy and Engineeringsilicaradiation effectsAb initio calculationssilica.0210 nano-technologyLuminescence
researchProduct

Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers

2020

The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceDoped optical fibers)Analytical chemistryRadiation01 natural sciencesSpectral linelaw.inventionlaw0103 physical sciencespoint defectsFiberIrradiationElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)ComputingMilieux_MISCELLANEOUSpure silica core[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]010308 nuclear & particles physicsAttenuationSettore FIS/01 - Fisica SperimentaleX-rayAttenuationNuclear Energy and Engineeringradiation effects
researchProduct

Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples

2008

International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersAnalytical chemistrychemistry.chemical_elementGermanium02 engineering and technologyconfocal microscopy01 natural sciencesSpectral linelaw.inventionAbsorptionX-rays.law0103 physical sciencesX-raysluminescencepoint defectsIrradiationFiberElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceNuclear Energy and EngineeringchemistryEPR0210 nano-technologyLuminescence
researchProduct

Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading

2019

The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersHydrogenAnalytical chemistrychemistry.chemical_element01 natural scienceslaw.invention[SPI]Engineering Sciences [physics]law0103 physical sciencesX-rayspoint defectsElectrical and Electronic Engineeringphosphoruspulsed X-raysSaturation (magnetic)ComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber010308 nuclear & particles physicsAttenuationtemperatureLiquid nitrogenCrystallographic defectNuclear Energy and Engineeringchemistryradiation effectsH2 loadingLuminescence
researchProduct

Time resolved photoluminescence associated with non-bridging oxygen hole centers in irradiated silica

2008

Abstract We report time resolved photoluminescence spectra of irradiated silica under excitation with a laser tunable in the visible and UV range. The investigated samples exhibit the emission band at 1.9 eV associated with non-bridging oxygen hole centers, whose spectral and kinetics properties do not depend on the kind of irradiation (γ, β and neutrons). The 1.9 eV luminescence decay follows a multi-exponential curve with a characteristic lifetime that increases from 8.9 μs to 10.4 μs on increasing the emission energy. This dependence accounts for the blue-shift of the emission band during its decay and is interpreted as due to the inhomogeneous properties of silica leading to a distribut…

Nuclear and High Energy PhysicsRange (particle radiation)PhotoluminescenceMaterials scienceKineticsAnalytical chemistryDefects Silica Radiation effectsLaserMolecular physicsSpectral linelaw.inventionlawAstrophysics::Earth and Planetary AstrophysicsIrradiationLuminescenceInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Irradiation induced defects in fluorine doped silica

2008

International audience; The role of fluorine doping in the response to UV pulsed laser and c radiation of silica preforms and fibers was studied using electron spin resonance (ESR) spectroscopy. Exposure to radiation mainly generates E0 centers, with the same effectiveness in fibers and in preforms. The E'concentration in F-doped silica fibers is found to increase with UV energy fluence till a saturation value, consistently with a precursor conversion process. These results show the fluorine role in reducing the strained Si–O bonds thus improving the radiation hardness of silica, also after drawing process.

Nuclear and High Energy Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials scienceOptical fiberDopingchemistry.chemical_elementSilicaPhotochemistryCrystallographic defectSilica irradiation effects fluorine dopinglaw.inventionNuclear magnetic resonancechemistrylawElectron spin resonanceHalogenPACS: 71.55.Jv; 61.72.Ww; 76.30.Mi; 61.80.Ed; 61.80.BaFluorineDefectsIrradiationElectron paramagnetic resonanceSpectroscopyInstrumentationFluorine doping
researchProduct

Paramagnetic germanium-related centers induced by energetic radiation in optical fibers and preforms

2009

International audience; We investigated the creation processes of Ge-related paramagnetic point defects in silica fibers and preforms, doped with different amounts of germanium, and X-ray irradiated at several radiation doses. Different paramagnetic defect species, like GeE0, Ge(1) and Ge(2), were revealed by electron paramagnetic resonance measurements and their concentration was studied as a function of the irradiation dose. The comparison with the optical absorption spectra points out the main role of Ge(1) on the optical transmission loss of fibers in the UV region.

Optical fiberAbsorption spectroscopyAnalytical chemistryOptical spectroscopychemistry.chemical_elementGermaniumPACS: 42.81.-I 61.72.uf 61.80.Cb 76.30.Mi 78.40.Pglaw.inventionAbsorptionParamagnetismlawElectron spin resonanceMaterials ChemistryOptical fibersIrradiationElectron paramagnetic resonance[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ResonanceSilicaSilica optical fiber defects Geermanium dopingCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesDefects
researchProduct

An original method to compute epipoles using variable homography: application to measure emergent fibers on textile fabrics

2012

International audience; Fabric's smoothness is a key factor to determine the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications1. In this paper we propose a …

Optical fiberComputer scienceEpipolar geometry02 engineering and technologylaw.invention[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processinglaw0202 electrical engineering electronic engineering information engineeringCalibrationComputer visionfabric defects/fiberElectrical and Electronic EngineeringSimulationMeasure (data warehouse)Smoothnessbusiness.industryFiber (mathematics)020208 electrical & electronic engineeringVariable homographyAtomic and Molecular Physics and OpticsComputer Science ApplicationsVariable (computer science)3D elevation measurement8. Economic growthepipolar geometry020201 artificial intelligence & image processingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingHomography (computer vision)
researchProduct

Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers

2018

International audience; The transient radiation‐induced attenuation (RIA) of two different versions of pure‐silica‐core (PSC) multimode optical fibers (so‐called “solarization‐resistant” fibers) exposed to nanosecond 1 MeV X‐ray pulses are investigated. On‐line RIA spectra measurements at both room temperature (RT) and liquid nitrogen temperatures (LNT) in the range 1–3.5 eV are performed. Following the RIA kinetics, the properties of the metastable defects that are bleached just after the pulse are discussed. The spectral decomposition of the RIA is performed using known Gaussian bands associated to point defects absorbing in this spectral range. For both fiber types, the generation and th…

Optical fiberMaterials science02 engineering and technologyComputer Science::Human-Computer InteractionRadiation01 natural scienceslaw.invention[SPI]Engineering Sciences [physics]law0103 physical sciencesMaterials ChemistryElectrical and Electronic Engineering[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industryX-raySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsSolarisationCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsoptical fiber silica point defects radiation induced absorption X-ray[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics0210 nano-technologybusiness
researchProduct

Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers

2017

International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…

Optical fiberMaterials scienceMaterials ScienceAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciencesOxygenlaw.inventionOpticslaw0103 physical sciencesThermalMechanics of MaterialGeneral Materials ScienceIrradiationElectron paramagnetic resonance010302 applied physicsirradiation effects point defects[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMechanical EngineeringAttenuationAtmospheric temperature range021001 nanoscience & nanotechnologyCrystallographic defectchemistryMechanics of Materials0210 nano-technologybusinessJournal of Materials Science
researchProduct