Search results for "deformation"
showing 10 items of 515 documents
Unrestricted Shapes of Jellium Clusters
1995
A jellium model with a completely relaxable background charge density is used to study metal clusters containing 2 to 22 electrons. The resulting shapes of the clusters exhibit breaking of axial and inversion symmetries, as well as molecular formation. The clusters without inversion symmetry are soft against deformation. The strongly deformed 14-electron cluster is found to be semi-magic. Stable-shape isomers are predicted.
Cu charge radii reveal a weak sub-shell effect at N=40
2016
Collinear laser spectroscopy on Cu58-75 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ(r2)A,A′ from the observed isotope shifts. A local minimum is observed in these radii differences at N=40, providing evidence for a weak N=40 sub-shell effect. However, comparison of δ(r2)A,A′ with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N=40.
A step further in the A = 33−35, N ≃ 21, island of inversion: the structure of 33Mg
2003
Experimental indications have been found in the seventies for the deformation of neutron-rich A ≃ 32 nuclei [1]. This could be explained by Hartree-Fock calculations, predicting deformed configurations in the ground state of nuclei in the A = 33−35, N ≃ 21 mass region. This exotic region, called the island of inversion [2], knows a renewed interest since it can be now experimentally accessible for detailed studies.
First Precision Mass Measurements of Refractory Fission Fragments
2005
Atomic masses of 95-100Sr, 98-105Zr, and [corrected] 102-110Mo and have been measured with a precision of 10 keV employing a Penning trap setup at the IGISOL facility. Masses of 104,105Zr and 109,110Mo are measured for the first time. Our improved results indicate significant deviations from the previously published values deduced from beta end point measurements. The most neutron-rich studied isotopes are found to be significantly less bound (1 MeV) compared to the 2003 atomic mass evaluation. A strong correlation between nuclear deformation and the binding energy is observed in the two-neutron separation energy in all studied isotope chains.
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams
2020
There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.
Quadrupole moment of Fr 203
2017
The spectroscopic electric quadrupole moment of the neutron-deficient francium isotope 203Fr was measured by using high-resolution collinear resonance ionization spectroscopy (CRIS) at the CERN Isotope Separation On-Line Device (ISOLDE)facility. A remeasurement of the 207Fr quadrupole momentwas also performed, resulting in a departure from the established literature value. A sudden increase in magnitude of the 203Fr quadrupole moment, with respect to the general trend in the region, points to an onset of static deformation at N =116 in the 87Fr isotopic chain. Calculation of the static and total deformation parameters show that the increase in static deformation only cannot account for the o…
Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality
2018
Two-dimensional Helmholtz equation with zero Dirichlet boundary condition on a circle: Analytic results for boundary deformation, the transition disk…
2019
A deformation of a disk D of radius r is described as follows: Let two disks D1 and D2 have the same radius r, and let the distance between the two disk centers be 2a, 0 ≤ a ≤ r. The deformation transforms D into the intersection D1 ∩ D2. This deformation is parametrized by e = a/r. For e = 0, there is no deformation, and the deformation starts when e, starting from 0, increases, transforming the disk into a lens. Analytic results are obtained for the eigenvalues of Helmholtz equation with zero Dirichlet boundary condition to the lowest order in e for this deformation. These analytic results are obtained via a Hamiltonian method for solving the Helmholtz equation with zero Dirichlet boundar…
Nuclear Moments and Deformation Change inA184ug,mfrom Laser Spectroscopy
1997
Resonance ionization spectroscopy (RIS) was performed on desorbed Au, and the complete hyperfine spectrum of both isomeric and ground states of the short lived 184Au nucleus has been recorded from the 5d106s S1y2 ! 5d106p P3y2 optical transition. The nuclear moments of both states and the mean square charge radius changes were measured. The magnetic moments were determined to be m 184g I5 12.07s2dmN and m I2 11.44s2dmN and the spectroscopic quadrupole moments to be Q 184g s 14.65s26db and Q184m s 11.90s16d b. A difference in the mean square charge radius dkr2 c l184g,184m 20.036s3d fm2 was found. [S0031-9007(97)03992-6]
Shape coexistence in Au 187 studied by laser spectroscopy
2020
Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …