Search results for "delay"
showing 10 items of 814 documents
Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks
2021
In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …
Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function
2006
This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.
Two-level branch prediction using neural networks
2003
Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors and replace the second level PHT with a neural network. Two neural networks are considered: a learning vec…
Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements
2010
International audience; A complete characterisation of the β-decay of neutron-rich nuclei can be obtained from the measurement of β-delayed gamma rays and, whenever the process is energetically possible, β-delayed neutrons. The accurate determination of the β-intensity distribution and the β-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.
The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process
2018
An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
2017
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…
Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei
2017
Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are ßn emitters. The initial abundance d…
Asynchronous L1 control of delayed switched positive systems with mode-dependent average dwell time
2014
Abstract This paper investigates the stability and asynchronous L 1 control problems for a class of switched positive linear systems (SPLSs) with time-varying delays by using the mode-dependent average dwell time (MDADT) approach. By allowing the co-positive type Lyapunov–Krasovskii functional to increase during the running time of active subsystems, a new stability criterion for the underlying system with MDADT is first derived. Then, the obtained results are extended to study the issue of asynchronous L 1 control, where “asynchronous” means that the switching of the controllers has a lag with respect to that of system modes. Sufficient conditions are provided to guarantee that the resulti…
Stabilization of positive switched systems with time-varying delays under asynchronous switching
2014
Published version of an article in the journal: International Journal of Control, Automation and Systems. Also available from the publisher at: http://dx.doi.org/10.1007/s12555-013-0486-x This paper investigates the state feedback stabilization problem for a class of positive switched systems with time-varying delays under asynchronous switching in the frameworks of continuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches between the candidate controllers and system modes are asynchronous. By constructing an appropriate co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during the running time of ac…
The photophysics of distorted nanographenes: Ultra-slow relaxation dynamics, memory effects, and delayed fluorescence
2023
The controlled deformation and engineering of the sp2 carbon network in atomically-precise nanographenes, and their substantially larger size as compared to typical optical dyes, opens new opportunities for the modulation of optical and electronic properties, but the peculiar photophysics of these systems is still poorly understood. Here, through a detailed comparative study of two well-defined distorted nanographenes, we show that they can exhibit interesting photophysical features, such as triplet-triplet annihilation delayed fluorescence, ultra-slow excited state dynamics, and excitation-wavelength memory effects on the nanosecond and sub-nanosecond relaxation cascades. Some of these beh…