Search results for "dewetting"

showing 10 items of 17 documents

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…

Materials scienceCondensed Matter Physic02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSilver nanoparticlelaw.inventionNanoparticlelawPhotovoltaics0103 physical sciencesSolar cellMechanics of MaterialGeneral Materials Sciencesubwavelength nanostructuresDewettingThin filmSurface plasmon resonancePlasmonThin film solar cell010302 applied physicsthin film solar cellsbusiness.industryMechanical EngineeringSelf-assemblyself-assemblyLocalized surface plasmon resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsphotovoltaicsMechanics of MaterialsOptoelectronicsPlasmonic-enhanced light trappingSubwavelength nanostructurenanoparticlesMaterials Science (all)0210 nano-technologybusinessPhotovoltaicLocalized surface plasmon
researchProduct

Rayleigh-instability-driven dewetting of thin Au and Ag films on indium-tin-oxide surface under nanosecond laser irradiations

2013

Investigations have been carried out on laser-beam-induced nanoparticle (NP) formation in thin (5 nm) Au and Ag films on indium-tin-oxide substrate. After the irradiation the films were observed to break-up into NPs through a dewetting mechanism. This mechanism was investigated as a Rayleigh-instability- driven process. In fact, for each used laser fluence, the resulting Au and Ag NPs' mean size and surface-to-surface mean distance were quantified and correlated between them in the framework of the Rayleigh-instability theory showing an excellent agreement. © The Institution of Engineering and Technology 2013.

quantitative analysiAnalytical chemistrymetallic thin filmsNanoparticleAg filmSubstrate (electronics)IndiumSettore ING-INF/01 - Elettronicaindium tin oxidePhysics::Fluid DynamicsGeneral Materials Sciencesilver nanoparticle articleDewettingRayleigh–Taylor instabilityOxide filmNuclear Experimentdegradationparticle sizeCondensed Matter PhysicsIndium tin oxideNanolithographydewettingnanomaterialIndium-tin-oxide substratechemical reactionMaterials sciencesurface propertyBiomedical EngineeringBioengineeringMean size GoldFluencenanoanalysiCondensed Matter::Materials ScienceOpticsMean distanceIrradiationtheoryLaser theorymetal nanoparticlerayleigh instability theorybusiness.industrylaser beam effectsLaser fluencelasernanofilmTin Silver gold nanoparticlenanofabricationnanoparticlesDe-wettingbusiness
researchProduct

Curvature as a Guiding Field for Patterns in Thin Block Copolymer Films

2018

Experimental data on thin films of cylinder-forming block copolymers (BC)—free-standing BCmembranes as well as supported BC films—strongly suggest that the local orientation of the BC patternsis coupled to the geometry in which the patterns are embedded. We analyze this phenomenon using generalsymmetry considerations and numerical self-consistent field studies of curved BC films in cylindricalgeometry. The stability of the films against curvature-induced dewetting is also analyzed. In goodagreement with experiments, we find that the BC cylinders tend to align along the direction of curvature athigh curvatures. At low curvatures, we identify a transition from perpendicular to parallel alignm…

Materials scienceField (physics)Ciencias FísicasGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistryCurvature01 natural sciencesTopological defect//purl.org/becyt/ford/1 [https]Orientation (geometry)PerpendicularDewettingThin filmCondensed matter physics//purl.org/becyt/ford/1.3 [https]021001 nanoscience & nanotechnologyCOPOLYMERSSymmetry (physics)0104 chemical sciencesBUCKLINGSoft Condensed Matter (cond-mat.soft)TOPOLOGICAL DEFECTS0210 nano-technologyCIENCIAS NATURALES Y EXACTASFísica de los Materiales Condensados
researchProduct

Supra-aggregates of fiber-forming anisotropic molecules.

2006

In this paper, the self-organization of fiber-forming anisotropic molecules is inspected both theoretically and experimentally. In the first part, a theoretical model which extends the de Gennes theory of thin films to assemblies of strongly anisotropic molecules is reported. The model predicts that solid supported thin films made up of fiber-forming discotic molecules can grow with both tangential and radial arrangement of the fibers, respectively leading to the formation of compact and holed supra- aggregates. These last systems form according to the following picture. The tangential growth minimizes the number of unfavorable free ends but introduces elastic strain especially in the centr…

Spin coatingCRYSTALChemistryIsotropyEvaporationFILMSMicroscopy Atomic ForceNANOSTRUCTURESSurfaces Coatings and FilmsCrystalCrystallographyModels ChemicalChemical physicsMaterials ChemistryAnisotropyThermodynamicsRhodamine 123Soft matterSelf-assemblyDewettingPhysical and Theoretical ChemistryAnisotropyMathematicsThe journal of physical chemistry. B
researchProduct

Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

2013

An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (lambda = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm(2)) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics. (C) 2013 AIP Publishin…

Innovative methodMaterials sciencePhysics and Astronomy (miscellaneous)Settore ING-INF/01 - ElettronicaLight scatteringQuartz SiliconSettore FIS/03 - Fisica Della Materialaw.inventionsymbols.namesakeLight managementSi nanostructures NanostructurelawDewetting proceLaser energieDewettingThin filmbusiness.industryScatteringIsolated clusterLaserInterconnected structureSemiconductorsymbolsOptoelectronicsbusinessRaman spectroscopyPhotovoltaicRaman scattering
researchProduct

Programmable Surface Architectures Derived from Hybrid Polyoxometalate-Based Clusters

2011

The exploration of the self-organization of a range of the polyoxometalate-based molecular structures reveals a diverse range of surface patterns and morphologies on solid substrates of technological interest, including methylated and hydroxylated silicon surfaces (namely, SiCH3 and SiOH). By exploiting the interplay between the intrinsic molecular properties and the surface chemistry as well as dynamic spatiotemporal phenomena (e.g., dewetting), we show that these systems can yield 0D, 2D, and 3D architectures via solution deposition at the solid surface, including nanodots, discs, lamellas, porous networks, and layer-by-layer assemblies. In general, we observed that layer-by-layer growth …

Materials scienceSiliconSolid surfaceDrop (liquid)chemistry.chemical_elementNanotechnologySurface energySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHigh surfaceGeneral EnergychemistryChemical physicsPolyoxometalateNanodotDewettingPhysical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct

From dewetting to wetting molecular layers: C60 on CaCO3(10 ̅14) as a case study.

2012

We report the formation of extended molecular layers of C-60 molecules on a dielectric surface at room temperature. In sharp contrast to previous C-60 adsorption studies on prototypical ionic crystal surfaces, a wetting layer is obtained when choosing the calcite (CaCO3)(10 (1) over bar4) surface as a substrate. Non-contact atomic force microscopy data reveal an excellent match of the hexagonal lattice of the molecular layer with the unit cell dimension of CaCO3(10 (1) over bar4) in the [01 (1) over bar0] direction, while a lattice mismatch along the [(4) over bar(2) over bar 61] direction results in a large-scale moire modulation. Overall, a (2 x 15) wetting layer is obtained. The distinct…

Materials scienceGeneral Physics and AstronomyDielectric530CrystallographyAdsorptionWetting transitionChemical physicsHexagonal latticeWettingDewettingPhysical and Theoretical ChemistryLayer (electronics)Wetting layerPhysical chemistry chemical physics : PCCP
researchProduct

Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties

2013

The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…

Materials scienceMie scatteringSilver nanoparticlePhysics::OpticsPlasmonBioengineeringNanotechnologyScattering efficiency02 engineering and technologyStatistical parameterSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energySilver nanoparticlelaw.inventionlawSurface coverage0103 physical sciencesSolar cellGeneral Materials ScienceDewettingElectrical and Electronic EngineeringThin filmPlasmon010302 applied physicsScatteringSurface plasmon resonance SilverMechanical EngineeringSolar cellStructural and optical propertieGeneral ChemistryLocalized surface plasmon resonance021001 nanoscience & nanotechnologyOptical propertiePhase diagramMechanics of MaterialsThin-film solar cells Nanoparticle0210 nano-technologySilver nanoparticle (NPs)Localized surface plasmon
researchProduct

Wetting behavior of solid hydrogen films

1996

We have studied the dewetting of quench-condensed solid hydrogen films on bare and Ne plated Ag substrates. Information about the morphology of the films during the dewetting process is obtained from measurements of photoelectron tunneling through the films and complementary surface plasmon resonance data. Plating the Ag substrate with Ne films of various thickness allows to tune the strength of the van der Waals interaction with the hydrogen and thus to change the H2 films from a state of incomplete to complete wetting.

Materials scienceHydrogenGeneral Physics and Astronomychemistry.chemical_elementNanotechnologySubstrate (electronics)symbols.namesakeChemical engineeringchemistrySolid hydrogenPlatingsymbolsWettingDewettingvan der Waals forceSurface plasmon resonanceCzechoslovak Journal of Physics
researchProduct

High-Yield Growth and Tunable Morphology of Bi2Se3 Nanoribbons Synthesized on Thermally Dewetted Au

2021

The yield and morphology (length, width, thickness) of stoichiometric Bi2Se3 nanoribbons grown by physical vapor deposition is studied as a function of the diameters and areal number density of the Au catalyst nanoparticles of mean diameters 8–150 nm formed by dewetting Au layers of thicknesses 1.5–16 nm. The highest yield of the Bi2Se3 nanoribbons is reached when synthesized on dewetted 3 nm thick Au layer (mean diameter of Au nanoparticles ~10 nm) and exceeds the nanoribbon yield obtained in catalyst-free synthesis by almost 50 times. The mean lengths and thicknesses of the Bi2Se3 nanoribbons are directly proportional to the mean diameters of Au catalyst nanoparticles. In contrast, the me…

Materials scienceNumber densityYield (engineering)synthesisGeneral Chemical EngineeringAnalytical chemistryNanoparticleBi<sub>2</sub>Se<sub>3</sub>ChemistryPhysical vapor depositionnanoribbonGeneral Materials ScienceDewettingQD1-999physical vapor depositionNanoscopic scaleStoichiometryDeposition (law)Nanomaterials
researchProduct