Search results for "dga"
showing 10 items of 134 documents
Quantum chemical simulations of doped ZnO nanowires for photocatalytic hydrogen generation
2016
Zinc oxide (ZnO) is considered in general as a promising material for solar water splitting. Its wurtzite-structured bulk samples, however, can be considered as active for photocatalytic applications only under UV irradiation, where they possess ∼1% efficiency of sunlight energy conversion due to their wide band gap (3.4 eV). Although pristine ZnO nanowires (NWs) possess noticeably narrower band gaps than the bulk, the tendency of band gap reduction with increasing NW diameter is insufficient, and further modification is required. We have contributed to filling this gap by performing a series of ab initio calculations on ZnO NWs of different diameters (dNW), which are mono-doped by metal (A…
Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure
2021
2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses.…
Effects of the Buffer Layers on the Performances of (Al,Ga)N Ultraviolet Photodetectors
2004
The fabrication of (Al,Ga)N-based metal–semiconductor–metal (MSM) photovoltaic detectors requires the growth of high-quality (Al,Ga)N films. Inserting a low-temperature deposited buffer layer enables the growth of an epitaxial layer with a reduced density of defects. Two structures using GaN and AlN buffer layers have been deposited by low-pressure metalorganic chemical vapor deposition and used to fabricate MSM interdigitated detectors. The devices have been characterized to investigate the effects of the buffer layers on the detector performances.
Printing ZnO Inks: From Principles to Devices
2020
Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations an…
Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films
2016
Plasma-enhanced atomic layer deposition was utilized to grow aluminum nitride (AlN) films on Si from trimethylaluminum and N2:H2 plasma at 200 °C. Thermal treatments were then applied on the films which caused changes in their chemical composition and nanostructure. These changes were observed to manifest in the refractive indices and densities of the films. The AlN films were identified to contain light element impurities, namely, H, C, and excess N due to nonideal precursor reactions. Oxygen contamination was also identified in the films. Many of the embedded impurities became volatile in the elevated annealing temperatures. Most notably, high amounts of H were observed to desorb from the…
Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells
2017
International audience; Advances in the synthesis and application of highly efficient polymers and small molecules over the last two decades have enabled the rapid advancement in the development of organic solar cells and photovoltaic technology as a promising alternative to conventional solar cells, based on silicon and other inorganic semiconducting materials. Among the different types of organic semiconducting materials, porphyrins and BODIPY-based small molecules and conjugated polymers attract high interest as efficient semiconducting organic materials for dye sensitized solar cells and bulk heterojunction organic solar cells. The highest power conversion efficiency exceeding 9% has be…
Defect spectroscopy of single ZnO microwires
2014
The point defects of single ZnO microwires grown by carbothermal reduction were studied by microphotoluminescence, photoresistance excitation spectra, and resistance as a function of the temperature. We found the deep level defect density profile along the microwire showing that the concentration of defects decreases from the base to the tip of the microwires and this effect correlates with a band gap narrowing. The results show a characteristic deep defect levels inside the gap at 0.88 eV from the top of the VB. The resistance as a function of the temperature shows defect levels next to the bottom of the CB at 110 meV and a mean defect concentration of 4 1018 cm3 . This combination of tech…
Solvent-Free Synthesis and Thin-Film Deposition of Cesium Copper Halides with Bright Blue Photoluminescence
2019
Non-toxic alternatives to lead halide perovskites are highly sought after for applications in optoelectronics. Blue-luminescent materials are especially demanded as they could be used to prepare white light-emitting diodes, with important potential applications in lighting systems. However, wide bandgap blue emitters with high photoluminescence quantum yields (PLQY) are typically more difficult to obtain as compared to green- or red-emitting ones. Here, we prepared two series of inorganic cesium copper halides, with the general formulas Cs3Cu2X5 and CsCu2X3 (X = Cl, Br, I, and mixtures thereof) by dry mechanochemical synthesis at room temperature. X-ray diffraction demonstrates quantitative…
Luminescence properties of wurtzite AlN nanotips
2006
The optical properties of aluminum nitride nanotips (AlNNTs) synthesized via vapor transport and condensation process have been studied by cathodoluminescence, photoluminescence (PL), thermoluminescence (TL), and UV absorption measurements. Two defect related transitions around 2.1 and 3.4eV and an excitonic feature at 6.2eV were identified. Compared to the AlN macropowders, the AlNNTs showed a blueshift (+0.2eV) of the ∼3.2eV peak. Analysis of both PL and TL excitation measurements indicated the existence of subband gap multiple energy levels in AlNNTs. A significant TL intensity even at 145°C suggests possible ultraviolet detector and dosimetric applications of these AlNNTs.
Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst
2015
Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [101¯0] direction. Interestingly, the average wire diameter has been found to …