Search results for "discretization"
showing 10 items of 237 documents
Initial strain effects in multilayer composite laminates
2001
A boundary integral formulation for the analysis of stress fields induced in composite laminates by initial strains, such as may be due to temperature changes and moisture absorption is presented. The study is formulated on the basis of the theory of generalized orthotropic thermo-elasticity and the governing integral equations are directly deduced through the generalized reciprocity theorem. A suitable expression of the problem fundamental solutions is given for use in computations. The resulting linear system of algebraic equations is obtained by the boundary element method and stress interlaminar distributions in the boundary-layer are calculated by using a boundary only discretization. …
A Domain Imbedding Method with Distributed Lagrange Multipliers for Acoustic Scattering Problems
2003
The numerical computation of acoustic scattering by bounded twodimensional obstacles is considered. A domain imbedding method with Lagrange multipliers is introduced for the solution of the Helmholtz equation with a second-order absorbing boundary condition. Distributed Lagrange multipliers are used to enforce the Dirichlet boundary condition on the scatterer. The saddle-point problem arising from the conforming finite element discretization is iteratively solved by the GMRES method with a block triangular preconditioner. Numerical experiments are performed with a disc and a semi-open cavity as scatterers.
Controlled time integration for the numerical simulation of meteor radar reflections
2016
We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …
A 3D mesoscopic approach for discrete dislocation dynamics
2001
In recent years a noticeable renewed interest in modeling dislocations at the mesoscopic scale has been developed leading to significant advances in the field. This interest has arisen from a desire to link the atomistic and macroscopic length scales. In this context, we have recently developed a 3D-discrete dislocation dynamics model (DDD) based on a nodal discretization of the dislocations. We present here the basis of our DDD model and two examples of studies with single and multiple slip planes.
Line element-less method (LEM) for beam torsion solution (truly no-mesh method)
2008
In this paper a new numerical method for finding approximate solutions of the torsion problem is proposed. The method takes full advantage of the theory of analytic complex function. A new potential function directly in terms of shear stresses is proposed and expanded in the double-ended Laurent series involving harmonic polynomials. A novel element-free weak form procedure, labelled Line Element-Less Method (LEM), has been developed imposing that the square of the net flux across the border is minimum with respect to coefficients expansion. Numerical implementation of the LEM results in systems of linear algebraic equations involving symmetric and positive-definite matrices without resorti…
Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental <italic>Discretized</italic> Paradigm
2018
Traditional pattern classification works with the moments of the distributions of the features and involves the estimation of the means and variances. As opposed to this, more recently, research has indicated the power of using the quantiles of the distributions because they are more robust and applicable for non-parametric methods. The estimation of the quantiles is even more pertinent when one is mining data streams. However, the complexity of quantile estimation is much higher than the corresponding estimation of the mean and variance, and this increased complexity is more relevant as the size of the data increases. Clearly, in the context of infinite data streams, a computational and sp…
A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion
2009
The aim of this paper is to introduce a deterministic particle method for the solution of two strongly coupled reaction-diffusion equations. In these equations the diffusion is nonlinear because we consider the cross and self-diffusion effects. The reaction terms on which we focus are of the Lotka-Volterra type. Our treatment of the diffusion terms is a generalization of the idea, introduced in [P. Degond, F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput. 11 (1990) 293-310] for the linear diffusion, of interpreting Fick's law in a deterministic way as a prescription on the particle velocity. Time discretization is based on the …
Shakedown optimum design of reinforced concrete framed structures
1994
Structures subjected to variable repeated loads can undergo the shakedown or adaptation phenomenon,-which prevents them from collapse but may cause lack of serviceability, for the plastic deformations developed, although finite, as shakedown occurrence postulates, may exceed some maximum values imposed by external ductility criteria. This paper is devoted to the optimal design of reinforced concrete structures, subjected to variable and repeated loads. For such structures the knowledge of the actual values taken by the plastic deformations, at shakedown occurrence, is a crucial issue. An approximate assessment of such plastic deformations is needed, which is herein provided in the shape of …
Robust and Efficient IMEX Schemes for Option Pricing under Jump-Diffusion Models
2013
We propose families of IMEX time discretization schemes for the partial integro-differential equation derived for the pricing of options under a jump diffusion process. The schemes include the families of IMEX-midpoint, IMEXCNAB and IMEX-BDF2 schemes. Each family is defined by a convex parameter c ∈ [0, 1], which divides the zeroth-order term due to the jumps between the implicit and explicit part in the time discretization. These IMEX schemes lead to tridiagonal systems, which can be solved extremely efficiently. The schemes are studied through Fourier stability analysis and numerical experiments. It is found that, under suitable assumptions and time step restrictions, the IMEX-midpoint fa…
A micro-mechanical model for grain-boundary cavitation in polycrystalline materials
2015
In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the fea…