Search results for "docking"

showing 10 items of 299 documents

2021

The binding of natural ligands and synthetic drugs to the P2Y12 receptor is of great interest because of its crucial role in platelets activation and the therapy of arterial thrombosis. Up to now, all computational studies of P2Y12 concentrated on the available crystal structures, while the role of intrinsic protein dynamics and the membrane environment in the functioning of P2Y12 was not clear. In this work, we performed all-atom molecular dynamics simulations of the full-length P2Y12 receptor in three different membrane environments and in two possible conformations derived from available crystal structures. The binding of ticagrelor, its two major metabolites, adenosine diphosphate (ADP)…

Agonist0303 health sciences010304 chemical physicsmedicine.drug_classProtein dynamicsPharmaceutical Science01 natural sciences03 medical and health sciencesAdenosine diphosphatechemistry.chemical_compoundMolecular dynamicsMembraneP2Y12chemistryDocking (molecular)0103 physical sciencesmedicineBiophysicsReceptor030304 developmental biologyPharmaceutics
researchProduct

Identification of a new series of amides as non-covalent proteasome inhibitors

2014

Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack o…

AmideMagnetic Resonance SpectroscopyStereochemistryProtein subunitPeptideMolecular Docking SimulationDrug DiscoverymedicineHumansProteasome inhibitorDocking studiesMultiple myelomaPharmacologychemistry.chemical_classificationOrganic ChemistryGeneral Medicinemedicine.diseaseAmidesYeastMolecular Docking SimulationchemistryProteasomeBiochemistryNon-covalent inhibitorDocking (molecular)Covalent bondProteasome Inhibitors
researchProduct

Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening

2013

The design through energy-based pharmacophore virtual screening has led to aminocyanopyridine derivatives as efficacious new inhibitors of Hsp90. The synthesized compounds showed a good affinity for the Hsp90 ATP binding site in the competitive binding assay. Moreover, they showed an excellent antiproliferative activity against a large number of human tumor cell lines. Further biological studies on the derivative with the higher EC50 confirmed its specific influence on the cellular pathways involving Hsp90.

AminopyridinesInhibitory Concentration 50Structure-Activity RelationshipUser-Computer InterfaceHeat shock proteinCell Line TumorSettore BIO/10 - BiochimicaDrug DiscoveryHumansHSP90 Heat-Shock ProteinsBinding siteVirtual screeningheat shock protein 90 inhibitors energy-based pharmacophore virtual screening cell cycle antiproliferative activitybiologyChemistryHsp90Combinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaHuman tumorMolecular Docking SimulationCell cultureDrug DesignEnergy basedbiology.proteinMolecular MedicinePharmacophoreDrug Screening Assays Antitumor
researchProduct

Synthesis, biological evaluation, and molecular docking studies of aldotetronic acid-based LpxC inhibitors

2022

: In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and suscepti…

AntibioticsBacterial uptakeLpxC inhibitorsOrganic ChemistryDrug DiscoveryAldotetronic acid derivativesMolecular-docking studiesLasBMolecular BiologyBiochemistrySettore CHIM/08 - Chimica Farmaceutica
researchProduct

A Novel Series of Acylhydrazones as Potential Anti-Candida Agents: Design, Synthesis, Biological Evaluation and In Silico Studies

2019

In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the …

Antifungal AgentsMolecular modelIn silicoPharmaceutical ScienceContext (language use)anti-CandidaMicrobial Sensitivity Tests01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationshiplcsh:Organic chemistryDrug DiscoverymedicinePhysical and Theoretical ChemistryFluconazole030304 developmental biologyCandida0303 health sciencesMolecular Structure010405 organic chemistrymolecular modelingLanosterolOrganic Chemistryanti-<i>Candida</i>HydrazonesBiological activityIn vitro0104 chemical sciencesMolecular Docking Simulationlanosterol 14α-demethylaseADMETchemistryBiochemistryDesign synthesisChemistry (miscellaneous)Drug DesignMolecular MedicinethiazoleFluconazoleacylhydrazonemedicine.drugProtein BindingMolecules
researchProduct

Synthesis, Properties and Antimicrobial Activity of 5-Trifluoromethyl-2-formylphenylboronic Acid

2020

2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3-hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking stud…

Antifungal AgentstrifluoromethylStereochemistryphenylboronicBacillus cereusAntifungal drugbenzoxaborolePharmaceutical ScienceMicrobial Sensitivity Tests010402 general chemistry01 natural sciencesequilibriumArticleAnalytical Chemistrycrystallcsh:QD241-441chemistry.chemical_compoundTavaborolelcsh:Organic chemistryCandida albicansDrug DiscoveryEscherichia colimedicineformylPhysical and Theoretical ChemistryPhenylboronic acidCandida albicansacidityTrifluoromethylKerydinbiology010405 organic chemistryChemistryOrganic ChemistryActive sitebiology.organism_classificationBoronic AcidsAnti-Bacterial Agents0104 chemical sciencesMechanism of actionChemistry (miscellaneous)Docking (molecular)Benzaldehydesdockingbiology.proteinMolecular MedicineantimicrobialLeucine-tRNA Ligasemedicine.symptomMolecules
researchProduct

Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors.

2020

Abstract Background Depression and stress-related disorders are leading causes of death worldwide. Standard treatments elevating serotonin or noradrenaline levels are not sufficiently effective and cause adverse side effects. A connection between dopamine pathways and stress-related disorders has been suggested. Compounds derived from herbal medicine could be a promising alternative. We examined the neuroprotective effects of ursolic acid (UA) by focusing on dopamine signalling. Methods Trolox equivalent capacity assay was used to determine the antioxidant activities of UA in vitro. C. elegans N2 wildtype and dopamine receptor-knockout mutants (dop-1-deficient RB665 and dop-3-deficient LX70…

Antioxidantmedicine.medical_treatmentDopamineLongevityPharmaceutical SciencePharmacologyNeuroprotectionAntioxidants03 medical and health scienceschemistry.chemical_compoundGene Knockout Techniques0302 clinical medicineDopamineStress PhysiologicalDrug DiscoverymedicineAnimalsHumansReceptorCaenorhabditis elegansCaenorhabditis elegans Proteins030304 developmental biologyPharmacologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesChemistryReceptors Dopamine D2Receptors Dopamine D1Receptors Dopamine D3TriterpenesMolecular Docking SimulationComplementary and alternative medicineDopamine receptor030220 oncology & carcinogenesisMutationMolecular MedicineSerotoninTroloxReactive Oxygen Speciesmedicine.drugSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2.

2021

Abstract Introduction Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Ad…

Antioxidantmedicine.medical_treatmentPharmaceutical SciencePharmacologymedicine.disease_causeProtective AgentsNeuroprotectionAntioxidants03 medical and health scienceschemistry.chemical_compound0302 clinical medicineUrsolic acidStress PhysiologicalDrug DiscoveryAdaptogenmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsCaenorhabditis elegans030304 developmental biologyPharmacologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesbiologyDepressionPeroxiredoxinsbiology.organism_classificationAntidepressive AgentsTriterpenesDNA-Binding ProteinsMolecular Docking SimulationOxidative StressComplementary and alternative medicinechemistryGene Expression Regulation030220 oncology & carcinogenesisMutationMolecular MedicineReactive Oxygen SpeciesJugloneOxidative stressTranscription FactorsPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Design of new DNA-interactive agents by molecular docking and QSPR approach

2010

The design of new series of pyrrolo-pyrimidine derivatives, further annelated with a third heterocycle of different size, which also present several chain shape moieties of variable length and with different physico-chemical character, is reported. In this contribution we showed that the combination of docking-based and QSPR-based methods could lead to good models for ligand-DNA interaction prediction. By means of these computational approaches on 360 proposed inhibitors, we were able to select the most promising candidates as DNA-interactive drugs potentially endowed with antitumor activity.

Antitumor activitylcsh:QD241-441Quantitative structure–activity relationshipchemistry.chemical_compoundlcsh:Organic chemistryChemistryOrganic ChemistryDNA-interactive agents molecular docking QSPRComputational biologyVariable lengthCombinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaDNA
researchProduct

The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor

2020

The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP40) and polyP3. Subsequently, the interaction of RBD with ACE2 is sensitively inhibited. After the chemical modification of arginine, an increased inhibition by polyP, at a 1 : 1 molar ratio (polyP : RBP), is measured already at 0.1 μg mL−1. Heparin was ineffective. The results suggest a potential therapeutic benefit of polyP against SARS-C…

ArgininePolymersBiomedical EngineeringAntiviral Agents03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePolyphosphatesotorhinolaryngologic diseasesmedicineHumansGeneral Materials ScienceReceptor030304 developmental biologychemistry.chemical_classification0303 health sciencesInnate immune systemBinding SitesChemistryPolyphosphateBiomaterialChemical modificationHeparinPolyelectrolytesdigestive system diseases3. Good healthAmino acidMolecular Docking SimulationBiochemistry030220 oncology & carcinogenesisSpike Glycoprotein CoronavirusAngiotensin-Converting Enzyme 2medicine.drugProtein BindingBiomaterials Science
researchProduct