Search results for "drug screening"

showing 10 items of 223 documents

Synthesis, Anti-Inflammatory Activity, and in Vitro Antitumor Effect of a Novel Class of Cyclooxygenase Inhibitors: 4-(Aryloyl)phenyl Methyl Sulfones

2010

Following our previous research on anti-inflammatory drugs (NSAIDs), we report on the design and synthesis of 4-(aryloyl)phenyl methyl sulfones. These substances were characterized for their capacity to inhibit cyclooxygenase (COX-1 and COX-2) isoenzymes. Molecular modeling studies showed that the methylsulfone group of these compounds was inserted deep in the pocket of the human COX-2 binding site, in an orientation that precludes hydrogen bonding with Arg120, Ser353, and Tyr355 through their oxygen atoms. The N-arylindole 33 was the most potent inhibitor of COX-2 and also the most selective (COX-1/COX-2 IC(50) ratio was 262). The indole derivative 33 was further tested in vivo for its ant…

Models MolecularIndolesMolecular modelCell SurvivalStereochemistrymedicine.drug_classAntineoplastic AgentsAnti-inflammatoryStructure-Activity RelationshipIn vivoCell Line TumorDrug DiscoverymedicineAnimalsHumansCyclooxygenase InhibitorsSulfonesBinding siteIC50Cell ProliferationIndole testCyclooxygenase 2 InhibitorsbiologyChemistryStereoisomerismSettore CHIM/08 - Chimica FarmaceuticaIn vitroRats4-(Aryloyl)phenyl methyl sulfones anti-inflammatory activity antitumor effect COX-1/COX-2 selectivityCyclooxygenase 1biology.proteinThermodynamicsMolecular MedicineCyclooxygenaseDrug Screening Assays AntitumorHydrophobic and Hydrophilic InteractionsJournal of Medicinal Chemistry
researchProduct

Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibi…

2008

The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent antiproliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.

Models MolecularIndolesStereochemistryAlkylationAntimitotic AgentsChemical synthesisMiceStructure-Activity RelationshipBiopolymersTubulinCell Line TumorDrug DiscoveryStructure–activity relationshipAnimalsHumansIndole testBinding SitesbiologyTubulin ModulatorsChemistryBiological activityTubulin ModulatorsTubulinbiology.proteinMolecular MedicineAntimitotic AgentDrug Screening Assays AntitumorColchicineProtein Binding
researchProduct

Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity

2013

The synthesis and characterization of three propynyloxycoumarins are reported in this work together with the formation of three different series of gold(i) organometallic complexes. Neutral complexes are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its corresponding dialkynyl complex is also shown and the formation of rectangular dimers for the gold derivative in the solid state can be observed. A detailed analysis of the absorption and emission spectra of both ligands and complexes allows us to attribute the luminescent behaviour to the coumarin organic ligand. More…

Models MolecularLuminescenceThioredoxin-Disulfide ReductasePhosphinesAntineoplastic AgentsCrystal structureCrystallography X-RayPhotochemistryInorganic ChemistryMetalchemistry.chemical_compoundCoumarinsCell Line TumorNeoplasmsPolymer chemistryHumansPropynyloxycoumarins; Gold(I) complexes; X-ray crystallography; Luminiscence; Biological activityta116Aqueous solutionLigandWaterBiological activityCoumarinSolubilitychemistryvisual_artvisual_art.visual_art_mediumDrug Screening Assays AntitumorLuminescencePhosphorescenceOrganogold CompoundsDalton Trans.
researchProduct

Triphenyltin(IV) 2-[(E)-2-(aryl)-1-diazenyl]benzoates as anticancer drugs: Synthesis, structural characterization, in vitro cytotoxicity and study of…

2009

Summary: Triphenyltin(IV) complexes of composition [Ph3SnL 1H]n (1) and [Ph3SnL2H]n (2) (where L1H=2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl] benzoate and L2H = 2-[(E)-2-(4-Hydroxy-5-methylphenyl)-1-diazenyl] benzoate) were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The molecular structures and geometries of the complexes (1 and 2) were fully optimized using the quantum mechanical method (PM3). Complexes (1 and 2) were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumour cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The test compound…

Models MolecularMagnetic Resonance SpectroscopySpectrophotometry InfraredStereochemistryTriphenyltin(IV) 2-[(E)-2-(4-Hydroxy-5-methylphenyl)-1-diazenyl]benzoateAntineoplastic AgentsCrystallography X-RayThymidylate synthaseAnti-cancer drugTriphenyltin(IV) benzoateCell Line TumorRibonucleotide ReductasesOrganotin CompoundsHumansPharmacology (medical)Pharmacologychemistry.chemical_classificationBinding SitesbiologyCell DeathChemistryTopoisomeraseThymidylate SynthaseIn vitroBenzoatesRibonucleotide reductaseEnzymeOncologyDocking (molecular)Cell cultureSettore CHIM/03 - Chimica Generale E InorganicaDocking studiebiology.proteinQuantum TheoryThermodynamicsTriphenyltin(IV) 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoateDrug Screening Assays AntitumorCell line
researchProduct

Synthesis and cytotoxic activity of a new potential DNA bisintercalator: 1,4-Bis{3-[N-(4-chlorobenzo[g]phthalazin-1-yl)aminopropyl]}piperazine

2010

The synthesis of new 1,4-bisalkylamino (2-4) and 1-alkylamino-4-chloro (5-6) substituted benzo[g]phthalazines is reported. Compounds 2-4 and 6 were prepared both in the free and heteroaromatic ring protonated forms. Bifunctional 6 contains the 1,4-bisaminopropylpiperazine chain as a linker between the two heteroaromatic units, whereas 5 is its monofunctional analogue. The in vitro antitumour activity of the synthesized compounds has been tested against human colon, breast and lung carcinoma cells, and also against human glioblastoma cells. Results obtained show that all of them are active in all cases, but bifunctional 6·2HCl is remarkably effective against the four cell lines tested, exhib…

Models MolecularMolecular modelStereochemistryClinical BiochemistryPharmaceutical ScienceAntineoplastic AgentsNucleic Acid DenaturationBiochemistryChemical synthesisPiperazineschemistry.chemical_compoundCell Line TumorNeoplasmsDiamineDrug DiscoveryHumansBifunctionalPiperazineMolecular BiologyCell ProliferationChemistryOrganic ChemistryDNAIntercalating AgentsPiperazinePhthalazinesMolecular MedicineDrug Screening Assays AntitumorLinkerDNAPhthalazines
researchProduct

In-silico screening of new potential Bcl-2/Bcl-xl inhibitors as apoptosis modulators

2008

One of the major problems in the fight against cancer is drug-resistance, which, at a molecular level, can be acquired through mutations able to deactivate apoptosis. In particular, proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-xl and Bcl-2, are overexpressed in many tumours. The development of new inhibitors of these proteins as potential anticancer therapeutics represents a new frontier. In this work, we carried out an in-silico screening of compounds from a free database of more than 2 million structures (ZINC database), which allowed us to identify 17 sulfonamide derivatives as new potential inhibitors; thes…

Models MolecularProgrammed cell deathDatabases FactualIn silicobcl-X ProteinAntineoplastic AgentsApoptosisBcl-xLDrug resistanceBiologyCatalysisInorganic ChemistryNeoplasmsmedicineAnimalsHumansPhysical and Theoretical ChemistryOrganic ChemistrySulfonamide (medicine)CancerApoptosis Bcl-2 Bcl-xl Inhibitors Molecular dockingmedicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaMolecular medicineComputer Science ApplicationsCell biologyComputational Theory and MathematicsDrug Resistance NeoplasmApoptosisCancer researchbiology.proteinDrug Screening Assays Antitumormedicine.drugJournal of Molecular Modeling
researchProduct

Identification of potential inhibitors targeting BRAF-V600E mutant melanoma cells.

2020

Models MolecularProto-Oncogene Proteins B-rafProtein ConformationMutantMutation MissenseDermatologyInhibitory Concentration 50Structure-Activity RelationshipCell Line TumormedicineHumansPoint MutationMolecular Targeted TherapyPrecision MedicineMelanomaProtein Kinase InhibitorsDose-Response Relationship Drugbusiness.industryMelanomaDrug Repositioningmedicine.diseaseNeoplasm ProteinsBRAF V600EMolecular Docking SimulationAmino Acid SubstitutionDrug DesignCancer researchIdentification (biology)Drug Screening Assays AntitumorbusinessJournal of the American Academy of Dermatology
researchProduct

Indicaxanthin, a multi-target natural compound from Opuntia ficus-indica fruit: From its poly-pharmacological effects to biochemical mechanisms and m…

2019

Abstract Over the latest years phytochemical consumption has been associated to a decreased risk of both the onset and the development of a number of pathological conditions. In this context indicaxanthin, a betalain pigment from Opuntia ficus-indica fruit, has been the object of sound research. Explored, at first, for its mere antioxidant potential, Indicaxanthin is now regarded as a redox-active compound able to exert significant poly-pharmacological effects against several targets in a number of experimental conditions both in vivo and in vitro. This paper aims to provide an overview on the therapeutical effects of indicaxanthin, ranging from the anti-inflammatory to the neuro-modulatory…

Models MolecularPyridinesOpuntia ficusPhytochemicalsContext (language use)Antioxidant potential01 natural sciencesMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundMulti targetCell Line TumorNeoplasmsSettore BIO/10 - BiochimicaBetalainDrug DiscoveryAnimalsHumansCell Proliferation030304 developmental biologyInflammationIndicaxanthin Multi-target compound Poly-pharmacology Antioxidant Antiinflammatory Antitumoral Antiproliferative Neuromodulator Molecular modellingPharmacologyBiological Products0303 health sciencesDose-Response Relationship DrugMolecular StructureTraditional medicine010405 organic chemistryNatural compoundOrganic ChemistryOpuntiaGeneral MedicineAntineoplastic Agents PhytogenicSettore CHIM/08 - Chimica FarmaceuticaBetaxanthins0104 chemical sciencesMice Inbred C57BLNeuroprotective AgentsPhytochemicalchemistryBlood-Brain BarrierFruitDrug Screening Assays AntitumorIndicaxanthinEuropean Journal of Medicinal Chemistry
researchProduct

Design and Synthesis of 4-Substituted Indolo[3,2-e][1,2,3]triazolo[1,5-a]pyrimidine Derivatives with Antitumor Activity

2008

New derivatives of the indolo[3,2- e][1,2,3]triazolo[1,5- a]pyrimidine system, substituted in the 4 position, were designed as novel antitumor agents because of their theoretical capability to form stable complexes with DNA fragments. The calculated free energies of binding were found in the range -12.76 --> -39.68 Kcal/mol. The docking studies revealed a common binding mode with the chromophore intercalated between GC base pairs, whereas the side chain lies along the minor groove. Compounds, selected on the basis of the docking studies and suitably synthesized, showed antiproliferative activity against each type of tumor cell line investigated, generally in the low micromolar range. The mo…

Models MolecularSEQUENCE SPECIFICITYMolecular modelPyrimidineStereochemistryDNA-BINDINGBIOLOGICAL INTERESTStereoisomerismAntineoplastic AgentsPyrimidinonesChemical synthesisHeterocyclic Compounds 4 or More RingsAUTOMATED DOCKINGchemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoveryStructure–activity relationshipHumansALGORITHMBinding siteCell ProliferationBinding SitesMolecular StructureChemistryBiological activityStereoisomerismDOMINO REACTIONDNADocking (molecular)Drug DesignNATIONAL-CANCER-INSTITUTEACTINOMYCIN-DMolecular MedicineCOMPLEXESDrug Screening Assays AntitumorTUMOR-CELL-LINES
researchProduct

Synthesis and antiproliferative activity of new derivatives containing the polycyclic system 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[3’,4’:2,3]azep…

2013

The reaction under reflux between 1-phenyl-3-R-5-methylaminopyrazoles and 2,5-hexanedione lead to 5,7:7,13-dimethanopyrazolo[3,4-b]pyrazolo[3′,4′:2,3]azepino[4,5-f]azocine derivatives 3b–g. These unusual molecules show the structural complexity of many biologically active natural products and are endowed with the chemical diversity that is required in drug discovery. The compounds 3b,e were reduced by hydrogen in the presence of Palladium on activated charcoal to give the dihydro derivatives 5b,e. Compounds 3b–f and 5b,e were selected by the NCI to evaluate their in vitro antiproliferative activity against 60 human cell lines derived from nine clinically isolated cancer types (leukaemia, lu…

Models MolecularStereochemistryAntineoplastic AgentsHL-60 CellsHeterocyclic Compounds 4 or More RingsDephosphorylationchemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorSettore BIO/10 - BiochimicaDrug DiscoverymedicineMoleculeHumansAzocinePolycyclic CompoundsCell ProliferationPharmacologyDose-Response Relationship DrugMolecular StructureDrug discoveryOrganic ChemistryCell CycleCancerBiological activityGeneral MedicineCell cyclemedicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaIn vitrochemistryMCF-7 Cells57:713-dimethanopyrazolo[34-b]pyrazolo[3’4’:23]azepino[45-f]azocine derivatives antiproliferative activity G0-G1 arrest pRbDrug Screening Assays AntitumorK562 Cells
researchProduct