Search results for "dynamical system"

showing 10 items of 523 documents

Gibbs and harmonic measures for foliations with negatively curved leaves

2013

In this thesis we develop a notion of Gibbs measure for the geodesic flow tangent to a foliated bundle over a compact and negatively curved basis. We also develop a notion of F-harmonic measure and prove that there exists a natural bijective correspondence between the two. For projective foliated bundles with sphere-fibers without transverse invariant measure, we show the uniqueness of these measures for any Hölder potential on the basis. In that case we also prove that F-harmonic measures are realized as weighted limits of large balls tangent to the leaves and that their conditional measures on the fibers are limits of weighted averages on the orbits of the holonomy group.

Feuilletages[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]théorie ergodiqueMathematics::Differential Geometryactions de groupesMesures de GibbsGibbs
researchProduct

Generalized Fibonacci Dynamical Systems

2009

In this paper we consider generalizations of dynamical systems that are based on the Fibonacci sequence. We first study stability properties of such systems for both the continuous and discrete–time case. Then, by considering the Kronecker operator, a further class of dynamical systems is introduced whose outputs can be used to define possible generalization of the golden section. Appli- cations of such system may range from realization of digital filters, manufacturing of tissue with fractal property, etc. Properties of sequences generated by these systems are partially considered and has to be further addressed.

Fibonacci dynamical systemSettore ING-INF/04 - Automaticagolden ratio
researchProduct

Diffusive energy growth in classical and quantum driven oscillators

1991

We study the long-time stability of oscillators driven by time-dependent forces originating from dynamical systems with varying degrees of randomness. The asymptotic energy growth is related to ergodic properties of the dynamical system: when the autocorrelation of the force decays sufficiently fast one typically obtains linear diffusive growth of the energy. For a system with good mixing properties we obtain a stronger result in the form of a central limit theorem. If the autocorrelation decays slowly or does not decay, the behavior can depend on subtle properties of the particular model. We study this dependence in detail for a family of quasiperiodic forces. The solution involves the ana…

Floquet theoryDynamical systems theoryStatistical and Nonlinear PhysicsQuantum chaossymbols.namesakeClassical mechanicsQuasiperiodic functionsymbolsHamiltonian (quantum mechanics)Mathematical PhysicsHarmonic oscillatorEigenvalues and eigenvectorsRandomnessMathematicsJournal of Statistical Physics
researchProduct

Asymptotic regime in N random interacting species

2005

The asymptotic regime of a complex ecosystem with \emph{N}random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i-th density species, the extinction of species and the local field acting on the i-th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the $i^{th}$ species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.

Fluctuation phenomena random processes noise and Brownian motionPhysicsPhysics - Physics and SocietyFluctuation phenomena random processes noise and Brownian motion; Nonlinear dynamics and nonlinear dynamical systems; Population dynamics and ecological pattern formation; Complex Systemseducation.field_of_studySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciExtinctionField (physics)PopulationFOS: Physical sciencesComplex SystemsPhysics and Society (physics.soc-ph)External noiseCondensed Matter PhysicsComplex ecosystemMultiplicative noiseElectronic Optical and Magnetic MaterialsProbability distributionQuantitative Biology::Populations and EvolutionStatistical physicsNonlinear dynamics and nonlinear dynamical systemeducationLocal fieldComputer Science::Distributed Parallel and Cluster ComputingPopulation dynamics and ecological pattern formation
researchProduct

FOUNDATIONS OF FRACTIONAL DYNAMICS

1995

Time flow in dynamical systems is reconsidered in the ultralong time limit. The ultralong time limit is a limit in which a discretized time flow is iterated infinitely often and the discretization time step is infinite. The new limit is used to study induced flows in ergodic theory, in particular for subsets of measure zero. Induced flows on subsets of measure zero require an infinite renormalization of time in the ultralong time limit. It is found that induced flows are given generically by stable convolution semigroups and not by the conventional translation groups. This could give new insight into the origin of macroscopic irreversibility. Moreover, the induced semigroups are generated …

Fractional dynamicsDiscretizationFlow (mathematics)Dynamical systems theoryApplied MathematicsModeling and SimulationMathematical analysisTime derivativeDissipative systemErgodic theoryGeometry and TopologyLimit (mathematics)MathematicsFractals
researchProduct

Random cutout sets with spatially inhomogeneous intensities

2015

We study the Hausdorff dimension of Poissonian cutout sets defined via inhomogeneous intensity measures on Ahlfors-regular metric spaces. We obtain formulas for the Hausdorff dimension of such cutouts in self-similar and self-conformal spaces using the multifractal decomposition of the average densities for the natural measures.

General MathematicsStructure (category theory)Hausdorff dimensionDynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)010104 statistics & probabilityCorollaryDimension (vector space)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematics - Dynamical SystemsMathematicsmatematiikkaHausdorffin dimensioProbability (math.PR)010102 general mathematicsMathematical analysisMultifractal systemPoissonian CutoutMetric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionPrimary 60D05 Secondary 28A80 37D35 37C45Intensity (heat transfer)Mathematics - Probability
researchProduct

On invariant measures of finite affine type tilings

2006

In this paper, we consider tilings of the hyperbolic 2-space, built with a finite number of polygonal tiles, up to affine transformation. To such a tiling T, we associate a space of tilings: the continuous hull Omega(T) on which the affine group acts. This space Omega(T) inherits a solenoid structure whose leaves correspond to the orbits of the affine group. First we prove the finite harmonic measures of this laminated space correspond to finite invariant measures for the affine group action. Then we give a complete combinatorial description of these finite invariant measures. Finally we give examples with an arbitrary number of ergodic invariant probability measures.

General MathematicsSubstitution tiling[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]30C85Dynamical Systems (math.DS)01 natural sciences37D40; 52C20; 30C85CombinatoricsAffine geometryAffine representationAffine hull0103 physical sciencesAffine groupFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematics37D40Applied Mathematics010102 general mathematics52C20Affine coordinate systemAffine shape adaptationAffine geometry of curves010307 mathematical physics
researchProduct

On a Retarded Nonlocal Ordinary Differential System with Discrete Diffusion Modeling Life Tables

2021

In this paper, we consider a system of ordinary differential equations with non-local discrete diffusion and finite delay and with either a finite or an infinite number of equations. We prove several properties of solutions such as comparison, stability and symmetry. We create a numerical simulation showing that this model can be appropriate to model dynamical life tables in actuarial or demographic sciences. In this way, some indicators of goodness and smoothness are improved when comparing with classical techniques.

General Mathematicslattice dynamical systemslife tables010103 numerical & computational mathematics:CIENCIAS ECONÓMICAS [UNESCO]01 natural sciencesStability (probability)010104 statistics & probabilitydiscrete nonlocal diffusion problemsComputer Science (miscellaneous)Applied mathematics0101 mathematicsDiffusion (business)Engineering (miscellaneous)MathematicsDiffusion modelingSmoothness (probability theory)Computer simulationlcsh:MathematicsUNESCO::CIENCIAS ECONÓMICASlcsh:QA1-939Symmetry (physics)Ordinary differential systemordinary differential equationsOrdinary differential equationretarded equationsMathematics
researchProduct

Some notes on a superlinear second order Hamiltonian system

2016

Variational methods are used in order to establish the existence and the multiplicity of nontrivial periodic solutions of a second order dynamical system. The main results are obtained when the potential satisfies different superquadratic conditions at infinity. The particular case of equations with a concave-convex nonlinear term is covered.

General Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematical analysisPrimary 34C25; Secondary 34B15; Mathematics (all)Algebraic geometryDynamical systemInfinity01 natural sciencesHamiltonian systemTerm (time)010101 applied mathematicsNonlinear systemNumber theorySecondary 34B15Order (group theory)Primary 34C250101 mathematicsMathematicsmedia_common
researchProduct

Solving stochastic differential equations on Homeo(S1)

2004

Abstract The Brownian motion with respect to the metric H 3/2 on Diff( S 1 ) has been constructed. It is realized on the group of homeomorphisms Homeo( S 1 ). In this work, we shall resolve the stochastic differential equations on Homeo( S 1 ) for a given drift Z .

Geometric Brownian motionPure mathematicsMathematics::Dynamical SystemsGroup (mathematics)Mathematical analysisMathematics::Geometric TopologyStochastic differential equationDiffusion processMetric (mathematics)Novikov's conditionGirsanov transformFlow of homeomorphismsCanonical Brownian motionMartingale problemBrownian motionAnalysisMathematicsJournal of Functional Analysis
researchProduct