Search results for "dynamics."

showing 10 items of 9637 documents

Complex structural contribution of the morphotropic phase boundary in Na0.5Bi0.5TiO3 - CaTiO3 system

2019

Abstract The correlation between structure and dielectric properties of lead-free (1-x)Na0.5Bi0.5TiO3 - xCaTiO3 ((1-x)NBT - xCT) polycrystalline ceramics was investigated systematically by X-ray diffraction, combined with impedance spectroscopy for dielectric characterizations. The system shows high miscibility in the entire composition range. A morphotropic phase boundary (MPB), at 0.09 ≤ x

010302 applied physicsDiffractionPhase boundaryMaterials scienceProcess Chemistry and TechnologyThermodynamics02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesMiscibilitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDielectric spectroscopyvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_medium[CHIM]Chemical SciencesCrystalliteCeramic0210 nano-technology
researchProduct

A Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle

2016

In this article we present an approach to the description of Magnetohydrodynamic Auxiliary Propulsion system for docking assistance of autonomous vehicle. Preliminarily, an analytical model which includes an electromagnetic model and a thermal model is presented. Successively, in order to move beyond the analytical model, a 3-D MHD modeling tool and a Runge Kutta method based solver are presented and they are used to investigate an alternative MHD solutions. Some numerical analysis are given

010302 applied physicsEngineeringbusiness.industryNumerical analysis05 social sciencesControl engineeringOcean EngineeringSolverPropulsionSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciOceanography01 natural sciencesRunge–Kutta methodsMagnetohydrodinamic Propulsion SystemSettore ING-INF/04 - AutomaticaPhysics::Space Physics0502 economics and business0103 physical sciencesMagnetohydrodynamic driveElectromagnetic modelMagnetohydrodynamicsThermal modelbusinessInstrumentation050203 business & management
researchProduct

Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers

2016

Abstract The self-sustained propagating reaction occurring in nanometric metallic multilayers was studied by means of molecular dynamics (MD) and numerical modeling. We focused on the phenomenon of the exothermic dissolution of one metallic reactant into the less refractory one, such as Ni into liquid Al. The exothermic character is directly related to a negative enthalpy of mixing. An analytical model based on the diffusion-limited dissolution [1] coupled with heat transfer was derived to account for the main aspects of the process. Together, several microscopic simulations were carried out. The first series were set up to obtain all the parameters governing the process, including the heat…

010302 applied physicsExothermic reactionMaterials sciencePolymers and PlasticsMetals and AlloysThermodynamics02 engineering and technology021001 nanoscience & nanotechnologyEnthalpy of mixing01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsCrystallographyScientific methodvisual_art0103 physical sciencesHeat transferCeramics and Compositesvisual_art.visual_art_mediumDiffusion (business)0210 nano-technologyDissolutionActa Materialia
researchProduct

Strategies for numerical simulation of linear friction welding of metals: a review

2017

Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, mate…

010302 applied physicsFEMWork (thermodynamics)Materials scienceComputer simulationNumerical analysiMechanical EngineeringMechanical engineering02 engineering and technologyWelding021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing EngineeringFinite element methodMaterial flowlaw.inventionReciprocating motionlawResidual stress0103 physical sciencesFriction welding0210 nano-technologyLinear friction weldingProduction Engineering
researchProduct

Field effect in the viscosity of magnetic colloids studied by multi-particle collision dynamics

2019

Abstract Colloidal solutions of magnetic nanoparticles are usually employed when the fluidity and magnetic properties are required at the same time, either in technical or biomedical applications. However, when the magnetic size of the nanoparticles is large enough (>12–15 nm) the colloid may form an equilibrium structure with or without the external magnetic field, which can significantly influence its rheology. Using multi-particle collision dynamics we study the internal structure and viscosity of the magnetic colloids at varying magnitudes of the externally applied field. We show a generalized structural behavior across all studied regimes and an appreciable increase of flow resistance …

010302 applied physicsFerrofluidMaterials scienceField (physics)Field effect02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter::Soft Condensed MatterViscosityRheologyChemical physics0103 physical sciencesMagnetic nanoparticlesMulti-particle collision dynamics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Stability of melt flow during magnetic sonication in a floating zone configuration

2018

Combined static and alternating magnetic fields are shown to create an oscillating pressure that can cause cavitation in molten metals. A time-averaged flow is also excited, consisting of two tori squeezed to thin boundary layers. Flow instability develops as a standing wave between these tori.

010302 applied physicsFluid Flow and Transfer ProcessesMaterials scienceFlow (psychology)Computational MechanicsBoundary (topology)Torus02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldPhysics::Fluid DynamicsStanding waveModeling and SimulationExcited stateCavitation0103 physical sciences0210 nano-technologyMelt flow indexPhysical Review Fluids
researchProduct

Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study

2019

Abstract Molecular dynamic simulation was used to study mechanism of self-propagating waves of explosive crystallization (devitrification) in the CuTi metallic glass. Processes in thin rectangular samples composed of one to two million atoms were simulated and compared with experimental data. It was shown that the nucleation of primary crystalline clusters occurs homogeneously due to spontaneous fluctuations of atomic structure; the clusters not

010302 applied physicsMaterials scienceAmorphous metalExplosive materialNucleation02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidlaw.inventionMolecular dynamicsDevitrificationChemical physicslaw0103 physical sciencesMaterials ChemistryCeramics and Composites[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Thin filmCrystallization0210 nano-technologyComputingMilieux_MISCELLANEOUSJournal of Non-Crystalline Solids
researchProduct

A multilayer model for self-propagating high-temperature synthesis of inter-metallic compounds

2007

International audience; Self-propagating high-temperature synthesis of intermetallic compounds is of wide interest. We consider reactions in a binary system in which the rise and fall of the temperature during the reaction is such that one of the reacting metals melts but not the other. For such a system, using the phase diagram of the binary system, we present a general theory that describes the reaction taking place in a single solid particle of one component surrounded by the melt of the second component. The theory gives us a set of kinetic equations that describe the propagation of the phase interfaces in the solid particle and the change in composition of the melt that surrounds it. I…

010302 applied physicsMaterials scienceComponent (thermodynamics)IntermetallicSelf-propagating high-temperature synthesisBinary compoundThermodynamics02 engineering and technology021001 nanoscience & nanotechnologySystem of linear equations01 natural sciencesSurfaces Coatings and Filmschemistry.chemical_compoundCrystallography[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]chemistryPhase (matter)0103 physical sciencesMaterials ChemistryBinary system[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical Chemistry0210 nano-technologyPhase diagram
researchProduct

Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)

2021

Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first princip…

010302 applied physicsMaterials scienceGeneral Chemical EngineeringAnharmonicity0211 other engineering and technologiesAb initioThermodynamics02 engineering and technologyGeneral ChemistryFunction (mathematics)engineering.material01 natural sciencesInstabilityComputer Science ApplicationsPhysical propertysymbols.namesakeThermoelastic dampingHelmholtz free energy0103 physical sciencessymbolsengineeringPericlase021102 mining & metallurgy
researchProduct

Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system

2011

The reactivity of a layered Ni-Al-Ni system is studied by means of molecular dynamics simulations, using an embedded-atom method type potential. The system, made of an fcc-Al layer embedded in fcc-Ni, is initially thermalized at the fixed temperature of 600 K. The early interdiffusion of Ni and Al at interfaces is followed by the massive diffusion of Ni in the Al layer and by the spontaneous phase formation of $B2$-NiAl. The solid-state reaction is associated with a rapid system heating, which further enhances the diffusion processes. For longer times, the system may partly lose some its $B2$-NiAl microstructure in favor of the formation of $L{1}_{2}$-${\mathrm{Ni}}_{3}\mathrm{Al}$. This st…

010302 applied physicsMaterials scienceNanotechnology02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsChemical physicsvisual_artPhase (matter)0103 physical sciencesvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Reactivity (chemistry)PACS: 64.70.Nd 02.70.Ns 68.35.bdDiffusion (business)0210 nano-technologyLayer (electronics)
researchProduct