Search results for "elastic recoil detection"

showing 10 items of 38 documents

Al2O3 ALD films grown using TMA + rare isotope 2H216O and 1H218O precursors

2021

Abstract In this work hydrogen and oxygen migration and exchange reactions in the atomic layer deposited (ALD) Al2O3 thin films were studied together with hydrogen incorporation by varying deposition parameters. Al2O3 films deposited at low temperatures can contain more than 20 at.% of hydrogen. Both higher temperature and longer purge length decrease the hydrogen and carbon concentrations significantly. In order to track the hydrogen and oxygen movement in the films, heavy water (2 H 2 16 O) and oxygen-18 enriched water (1 H 2 18 O) were used as precursors in combination with trimethylaluminium (TMA). Different isotopes of the same element were quantified by means of time-of-flight elastic…

Heavy waterMaterials scienceHydrogenInorganic chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesOxygen0104 chemical sciencesSurfaces Coatings and FilmsElastic recoil detectionchemistry.chemical_compoundchemistryThin film0210 nano-technologyTrimethylaluminiumCarbonDeposition (law)Applied Surface Science
researchProduct

Hydrogen influence on the structure and properties of amorphous hydrogenated carbon films deposited by direct ion beam

2008

Abstract The present work provides results for amorphous hydrogenated carbon (a-C:H) films grown by direct ion beam deposition method. Acetylene and its mixtures with hydrogen were used. The films were characterized by Rutherford backscattering spectrometry, elastic recoil detection, Raman spectroscopy, ellipsometry, infrared spectroscopy, and microhardness measurements. These techniques indicated that an admixture of hydrogen yields a lower deposition rate, a higher content of total and bounded hydrogen in the a-C:H films, and a lower film density. The optical and mechanical properties depend on both, hydrogen concentrations in the gas phase and in the films, and show a strong diamond-like…

HydrogenChemistryMetals and AlloysAnalytical chemistrychemistry.chemical_elementSurfaces and InterfacesRutherford backscattering spectrometrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidElastic recoil detectionCondensed Matter::Materials ScienceIon beam depositionCarbon filmAmorphous carbonMaterials ChemistryPhysics::Atomic PhysicsThin filmThin Solid Films
researchProduct

Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition

2013

Impurities in aluminum nitride films prepared by plasma enhanced atomic layer deposition using NH3-, N2/H2- and N2-based plasmas are investigated by combining time-of-flight elastic recoil detection analysis (ERDA) and Fourier transform infrared spectroscopy. Different atomistic growth mechanisms are found to exist between the plasma chemistries. N2-plasma is shown as not suitable for the low-temperature deposition of AlN. Films deposited by NH3- and N2/H2-based processes are nitrogen rich and heavily hydrogenated. Carbon impurities exist at higher concentrations for the N2/H2-processes. The discovery of nitrile groups in the films indicates that carbon impurities can be partially attribute…

Materials scienceAcoustics and UltrasonicsHydrogenAnalytical chemistryInfrared spectroscopychemistry.chemical_elementNitrideCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElastic recoil detectionAtomic layer depositionCarbon filmchemistryFourier transform infrared spectroscopySpectroscopyJournal of Physics D: Applied Physics
researchProduct

Studies on atomic layer deposition of MOF-5 thin films

2013

International audience; Deposition of MOF-5 thin films from vapor phase by atomic layer deposition (ALD) was studied at 225-350 degrees C. Zinc acetate (ZnAc2) and 1,4-benzenedicarboxylic acid (1,4-BDC) were used as the precursors. The resulting films were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), optical microscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), time-of-flight elastic recoil detection analysis (TOF-ERDA), isopropanol adsorption tests, and nanoindentation. It was found out that the as-deposited films were amorphous but crystallized in humid conditions at room temperature. The crystalline films h…

Materials scienceAnalytical chemistry02 engineering and technologyChemical vapor deposition010402 general chemistry01 natural sciencesAtomic layer depositionGeneral Materials ScienceThin filmFourier transform infrared spectroscopyta116ta114General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryNanoindentationMetal-organic frameworks021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAmorphous solidElastic recoil detectionCarbon filmMOF-5Mechanics of MaterialsALDHybrid materials0210 nano-technology
researchProduct

Corrosion Protection of Steel with Oxide Nanolaminates Grown by Atomic Layer Deposition

2011

Atomic layer deposited (ALD) aluminum and tantalum oxide (Al 2 O 3 and Ta 2 O 5 ) and their nanolaminates were applied as corrosion protection coatings on AISI 52100 steel. The aim was to combine the good sealing properties of Al 2 O 3 with the chemical stability of Ta 2 O 5 and to optimize the coating architecture in order to obtain the best possible long-term durability. Coating composition and morphology were studied with time-of-flight elastic recoil detection analysis (ToF-ERDA), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and field emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectrometry (EDS). Electrochemical properties were studied with vo…

Materials scienceOxide02 engineering and technologyengineering.material01 natural sciencesCorrosionAtomic layer depositionchemistry.chemical_compoundCoating0103 physical sciencesMaterials ChemistryElectrochemistryta116010302 applied physicsta114Renewable Energy Sustainability and the EnvironmentMetallurgy021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDielectric spectroscopyElastic recoil detectionSecondary ion mass spectrometryChemical engineeringchemistryengineering0210 nano-technologyLayer (electronics)Journal of the Electrochemical Society
researchProduct

Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon

2019

Abstract Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due …

Materials sciencepiiPassivationHydrogenSiliconAnnealing (metallurgy)ta221chemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyAtomic layer depositionnanorakenteetthermal atomic layer depositionThin filmalumiinisurface passivationblack flexible siliconta114Renewable Energy Sustainability and the EnvironmentDangling bondatomikerroskasvatus021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElastic recoil detectionchemistryChemical engineeringaluminum oxynitrideohutkalvot0210 nano-technologySolar Energy Materials and Solar Cells
researchProduct

Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition

2013

Abstract Amorphous Ca–P–O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness R rms values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on ro…

Materials scienceta114Metals and Alloyschemistry.chemical_elementDiamondNanotechnologySurfaces and Interfacesengineering.materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidElastic recoil detectionAtomic layer depositionchemistryMaterials ChemistrySurface roughnessengineeringAtomic ratioThin filmComposite materialta116TitaniumThin Solid Films
researchProduct

Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

2015

ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). T…

Materials scienceta114Scanning electron microscopeAnalytical chemistryNucleationthin film growthCrystal growthSurfaces and InterfacesCondensed Matter PhysicsRutherford backscattering spectrometrySurfaces Coatings and FilmsElastic recoil detectionCrystallinityAtomic layer depositionSurface roughnessta116zinc oxide filmsJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
researchProduct

Aluminum oxide from trimethylaluminum and water by atomic layer deposition:The temperature dependence of residual stress, elastic modulus, hardness a…

2014

Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al2O3) films grown at 110-300 C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by na…

Materials scienceta221Residual stressAluminum oxideStress (mechanics)Atomic layer depositionEllipsometryResidual stressHardnessMaterials Chemistryta318Thin filmComposite materialta216ta116Elastic modulusta213ta114Atomic layer depositionMetals and AlloysSurfaces and InterfacesNanoindentationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElastic recoil detectionAdhesionElastic modulus
researchProduct

Ion-sputtering deposition of Ca–P–O films for microscopic imaging of osteoblast cells

2007

Abstract An ion-beam sputtering technique was used to produce Ca–P–O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF–ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposite…

Nuclear and High Energy PhysicsIon beam analysisArgonMaterials scienceAnnealing (metallurgy)Borosilicate glassAnalytical chemistrychemistry.chemical_elementAmorphous solidElastic recoil detectionchemistrySputteringAtomic ratioInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct