Search results for "electrodynamics"
showing 10 items of 820 documents
Quasi-Two-Dimensional Superfluid Fermionic Gases
2005
We study a quasi two-dimensional superfluid Fermi gas where the confinement in the third direction is due to a strong harmonic trapping. We investigate the behavior of such a system when the chemical potential is varied and find strong modifications of the superfluid properties due to the discrete harmonic oscillator states. We show that such quasi two-dimensional behavior can be created and observed with current experimental capabilities.
Vortex rings in two-dimensional harmonic traps
2006
We use the configuration interaction technique to study vortex formation in rotating systems of interacting spinless fermions and bosons trapped in a two-dimensional harmonic potential. In the fermionic case, the vortices appear as holes in the Fermi sea and localize in rings. The yrast spectrum is dominated by rigid rotation of the vortex ring, showing periodic oscillations. The Bose system shows a similar yrast spectrum and vortex formation. This can be explained by a one-to-one correspondence of the fermion and boson many-particle configurations. A simple mean-field model can reproduce the oscillations in the yrast spectrum, but fails to explain the localization of vortices.
Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensates
2013
This chapter is an introduction to the Bogoliubov theory of dilute Bose condensates as applied to the study of the spontaneous emission of phonons in a stationary condensate flowing at supersonic speeds. This emission process is a condensed-matter analog of Hawking radiation from astrophysical black holes but is derived here from a microscopic quantum theory of the condensate without any use of the analogy with gravitational systems. To facilitate physical understanding of the basic concepts, a simple one-dimensional geometry with a stepwise homogenous flow is considered which allows for a fully analytical treatment.
Many-body physics with ultracold gases
2007
This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
Hartree-Fock-Bogoliubov theory of polarized Fermi systems
2008
Condensed Fermi systems with an odd number of particles can be described by means of polarizing external fields having a time-odd character. We illustrate how this works for Fermi gases and atomic nuclei treated by density functional theory or Hartree-Fock-Bogoliubov (HFB) theory. We discuss the method based on introducing two chemical potentials for different superfluid components, whereby one may change the particle-number parity of the underlying quasiparticle vacuum. Formally, this method is a variant of non-collective cranking, and the procedure is equivalent to the so-called blocking. We present and exemplify relations between the two-chemical-potential method and the cranking approxi…
Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices
2013
The difference between boson and fermion dynamics in quasi-one-dimensional lattices is studied by calculating the persistent current in small quantum rings and by exact simulations of the time evolution of the many-particle state in two cases: expansion of a localized cloud and collisions in a Newton’s cradle. We consider three different lattices which in the tight-binding model exhibit flat bands. The physical realization is considered to be an optical lattice with bosonic or fermionic atoms. The atoms are assumed to interact with a repulsive short-range interaction. The different statistics of bosons and fermions lead to different dynamics. Spinless fermions are easily trapped in the flat…
Squeezing in a two-photon Dicke hamiltonian
1986
Abstract The single-mode, two-level atom Dicke hamiltonian with two-photon atom-field coupling is treated exactly and it is shown to yield a certain degree of squeezing in the field variables. This result is briefly discussed in connection with the previously shown absence of squeezing in the two-photon laser model.
Generation of multiphoton Fock states by bichromatic adiabatic passage: Topological analysis
2004
We propose a robust scheme to generate multi-photon Fock states in an atom-maser-cavity system using adiabatic passage techniques and topological properties of the dressed eigenenergy surfaces. The mechanism is an exchange of photons from the maser field into the initially empty cavity by bichromatic adiabatic passage. The number of exchanged photons depends on the design of the adiabatic dynamics through and around the conical intersections of dressed eigenenergy surfaces.
Low energy properties of color-flavor locked superconductors
2005
We discuss some low energy properties of color-flavor locked (CFL) superconductors. First, we study how an external magnetic field affects their Goldstone physics in the chiral limit, stressing that there is a long-range component of the field that penetrates the superconductor. We note that the most remarkable effect of the applied field is giving a mass to the charged pions and kaons. By estimating this effect, we see that for values $e B \sim 2 f_\pi \Delta$, where $\Delta$ is the quark gap, and $f_\pi$ the pion decay constant, the charged Goldstone bosons become so heavy, that they turn out to be unstable. The symmetry breaking pattern is then changed, agreeing with that of the magnetic…
Comment on “Accurate ground-state phase diagram of the one-dimensional extended Hubbard model at half filling”
2004
In PRB 68, 153101 (2003), Guoping Zhang presented density-matrix renormalization group (DMRG) results which contradict my DMRG calculations and Hirsch's quantum Monte Carlo (QMC) simulations for the charge-density-wave (CDW) phase boundary in the one-dimensional extended Hubbard model at half filling. In this Comment I show that Zhang's results are inaccurate and that his criticism of my work is groundless.