Search results for "elektronit"

showing 10 items of 42 documents

Mechanisms of Electron-Induced Single-Event Latchup

2019

In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.

Nuclear and High Energy PhysicsWork (thermodynamics)Materials scienceSiliconchemistry.chemical_elementLinear energy transferContext (language use)Electronhiukkaskiihdyttimetelektronit01 natural sciencesradiation physics0103 physical sciencesElectronicsStatic random-access memoryDetectors and Experimental TechniquesElectrical and Electronic EngineeringRadiation hardeningta114010308 nuclear & particles physicsbusiness.industryelectronsparticle acceleratorssäteilyfysiikkaNuclear Energy and EngineeringchemistryOptoelectronicsbusinessIEEE Transactions on Nuclear Science
researchProduct

Electron-Induced Upsets and Stuck Bits in SDRAMs in the Jovian Environment

2021

This study investigates the response of synchronous dynamic random access memories to energetic electrons and especially the possibility of electrons to cause stuck bits in these memories. Three different memories with different node sizes (63, 72, and 110 nm) were tested. Electrons with energies between 6 and 200 MeV were used at RADiation Effects Facility (RADEF) in Jyvaskyla, Finland, and at Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER) in The European Organization for Nuclear Research (CERN), Switzerland. Photon irradiation was also performed in Jyvaskyla. In these irradiation tests, stuck bits originating from electro…

Nuclear and High Energy Physics[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicskäyttömuistitHardware_PERFORMANCEANDRELIABILITYElectronRadiationelektronit01 natural sciencesJovianelektroniikkakomponentitElectron radiationJupiterelectron radiation0103 physical sciencesRadiative transfer[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsElectrical and Electronic EngineeringavaruustekniikkaPhysicsHardware_MEMORYSTRUCTURESLarge Hadron Collider010308 nuclear & particles physicsionisoiva säteilystuck bits[SPI.TRON] Engineering Sciences [physics]/Electronics[INFO.INFO-ES] Computer Science [cs]/Embedded Systemstotal ionizing dose[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputational physicssäteilyfysiikkaNuclear Energy and Engineeringradiation effectssingle event upsets[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsNode (circuits)Random accessIEEE Transactions on Nuclear Science
researchProduct

Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs

2023

The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ( T BD ) and charge-to-breakdown ( Q BD ) of gate oxide were extracted and compared. The effect of electron radiation on the device lifetime reduction can be observed at lower stress gate-to-source voltage ( V GS ) levels. The models of T BD and Q BD dependence on the initial gate current ( I G0 ) are proposed which can be used to describe the device breakdown behaviour. peerReviewed

Nuclear and High Energy Physicsionisoiva säteilyelektronitelektroniikkakomponentitstressMOSFETNuclear Energy and Engineeringelectric breakdownsäteilyfysiikkasilicon carbidelogic gatesradiation effectstransistoritElectrical and Electronic Engineeringdegradation
researchProduct

Time-dependent density-functional theory for strongly interacting electrons

2017

We consider an analytically solvable model of two interacting electrons that allows for the calculation of the exact exchange-correlation kernel of time-dependent density functional theory. This kernel, as well as the corresponding density response function, is studied in the limit of large repulsive interactions between the electrons and we give analytical results for these quantities as an asymptotic expansion in powers of the square root of the interaction strength. We find that in the strong interaction limit the three leading terms in the expansion of the kernel act instantaneously while memory terms only appear in the next orders. We further derive an alternative expansion for the ker…

Physicsta114Strongly Correlated Electrons (cond-mat.str-el)010304 chemical physicsStrong interactionelectronsFOS: Physical sciencesElectronTime-dependent density functional theoryelektronit01 natural sciencesAdiabatic theoremCondensed Matter - Strongly Correlated Electronstime-dependent density functional theoryQuantum nonlocalityQuantum mechanics0103 physical sciencesDensity functional theory010306 general physicsAsymptotic expansionAdiabatic processPhysical Review A
researchProduct

Protonation-induced fluorescence modulation of carbazole-based emitters

2022

The development of purely organic fluorescence emitters is of great importance for their low cost and high performance. Responding to this demand, carbazole is a promising emitter due to its extensive freedom for functionalisation, high thermal and chemical stability, as well as low cost. Herein, the effect of protonation on the fluorescence of various pyridine-functionalised carbazole-based bipolar host materials was studied both in solution and in the solid-state. The restriction of intramolecular rotation of the molecules upon protonation of the pyridyl-moiety together with easier planarization of the protonated acceptor and the donor moieties and relocalisation of the LUMO orbital on th…

Quantitative Biology::BiomoleculesChemistry (miscellaneous)218 Environmental engineering216 Materials engineeringorgaaninen kemiasupramolekulaarinen kemiafluoresenssiGeneral Materials SciencemolekyylitPhysics::Chemical Physicselektronit
researchProduct

Ferromagnetic kinetic exchange interaction in magnetic insulators

2020

The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{…

Work (thermodynamics)magneettiset ominaisuudetMaterials scienceelectronic-structurePhysics MultidisciplinaryFOS: Physical sciencesmagnetic couplingelektronitmagneettikentätKinetic energyteoriatORBITAL PHYSICSCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceANTIFERROMAGNETISMHUBBARD-MODELPhysics - Chemical PhysicsSUPEREXCHANGE INTERACTIONSdensity functional theoryChemical Physics (physics.chem-ph)Condensed Matter - Materials SciencecomplexesScience & TechnologyStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCRYSTALmagnetic insulatorsPhysicsSUPERCONDUCTIVITYExchange interactionMaterials Science (cond-mat.mtrl-sci)transitionORDERhubbard-modelsuperexchange interactionsWannier function methodsELECTRONIC-STRUCTUREFerromagnetismPhysical SciencesCondensed Matter::Strongly Correlated ElectronsCOMPLEXESTRANSITION
researchProduct

Fast Green’s Function Method for Ultrafast Electron-Boson Dynamics

2020

The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green's function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green's function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation. We put forward a computationally efficient Gree…

bosonitPropagation timePhotonPhononDegrees of freedom (physics and chemistry)FOS: Physical sciencesGeneral Physics and AstronomyElectronelektronit01 natural sciences7. Clean energy010305 fluids & plasmasCondensed Matter - Strongly Correlated Electronslaskennallinen tiede0103 physical sciencessimulointikvanttifysiikka010306 general physicsfononitBosonPhysicsConservation lawSettore FIS/03Strongly Correlated Electrons (cond-mat.str-el)Computational physicsRelaxation (physics)Physical Review Letters
researchProduct

Time-linear scaling nonequilibrium Green's function methods for real-time simulations of interacting electrons and bosons. I : Formalism

2022

Simulations of interacting electrons and bosons out of equilibrium, starting from first principles and aiming at realistic multiscale scenarios, is a grand theoretical challenge. Here, using the formalism of nonequilibrium Green's functions and relying in a crucial way on the recently discovered time-linear formulation of the Kadanoff-Baym equations, we present a versatile toolbox for the simulation of correlated electron-boson dynamics. A large class of methods are available, from the Ehrenfest to the dressed GD for the treatment of electron-boson interactions in combination with perturbative, i.e., Hartree-Fock and second-Born, or nonperturbative, i.e., GW and T matrices either without or…

bosonitsimulointikvanttifysiikkaelektronit
researchProduct

Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at √sNN = 200 GeV

2016

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au + Au collisions at √sNN = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au + Au collisions. We compare …

charm hadronsHigh Energy Physics::PhenomenologyAu+Au collisionskvarkki-gluoniplasmaHigh Energy Physics::ExperimentNuclear Experimentelektronitbottom hadrons
researchProduct

Measurement of the energy distribution of electrons escaping minimum-B ECR plasmas

2017

The measurement of the electron energy distribution (EED) of electrons escaping axially from a minimum-B electron cyclotron resonance ion source (ECRIS) is reported. The experimental data were recorded with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The electrons escaping through the extraction mirror of the ion source were detected with a secondary electron amplifier placed downstream from a dipole magnet serving as an electron spectrometer with 500 eV resolution. It was discovered that the EED in the range of 5–250 keV is strongly non-Maxwellian and exhibits several local maxima below 20 keV energy. It was observed that the most influential ion source operating pa…

electron energy distributionElectron spectrometerFOS: Physical sciencesElectronelektronitresonanssi01 natural sciences7. Clean energyElectron cyclotron resonanceSecondary electrons010305 fluids & plasmasmikroaallot0103 physical sciencesplasma010302 applied physicsPhysicsRange (particle radiation)energiaionitBremsstrahlungPlasmaCondensed Matter PhysicsIon sourcePhysics - Plasma PhysicsPlasma Physics (physics.plasm-ph)electrons escapingAtomic physics
researchProduct