Search results for "engineering"
showing 10 items of 44231 documents
Space charge behavior of different insulating materials employed in AC and DC cable systems
2017
In this work, the space charge accumulation in three different XLPE based material has been carried out by using the PEA (Pulsed Electro-Acoustic) method. The specimens provided by a cables industry have been subjected to the same DC stress during polarization time at environment temperature. Afterwards, the high voltage generator has been turned off and the amount residual charge has been evaluated. The space charge profiles during polarization and depolarization have been carried out and compared. Finally, the distribution of electric field within the samples has been reported. In particular, the maximum distortion of electric field has been calculated by taking into account the distribut…
Application of the reduced I-V Blaesser’s characteristics in predicting PV modules and cells conversion efficiency in medium and high insolation cond…
2017
Abstract The article presents theoretical foundations of application of the reduced I-V Blaesser’s characteristics in predicting a photovoltaic cell/module (PV) efficiency, together with calculation procedures. A detailed analysis of the error of this transformation method of characteristics was carried out. Its practical application in predicting efficiency of operation of various PV cells and modules in medium and high insulation conditions was demonstrated. The practical suitability of the presented method in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis of the results of…
Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels
2018
Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…
Determination of Core Size Dependency on the EMI Suppression in Cable Ferrites
2020
Electromagnetic Compatibility (EMC) engineering should be approached via the systems approach, considering EMC throughout the design to anticipate possible electromagnetic interferences (EMI) problems. Nevertheless, an EMI source may appear when the designed device is supplied via an external power system or it is connected to another device to communicate to it. In these both cases, the cables or interfaces that interconnect the systems could represent the EMI source. Thereby, one of the most common techniques for reducing EMI in cables is the application of an EMI suppressor such as sleeve ferrite cores to them. The advantage of this solution is that it does not involve redesign the elect…
C-switches: Increasing switch radix with current integration scale
2011
In large switch-based interconnection networks, increasing the switch radix results in a decrease in the total number of network components, and consequently the overall cost of the network can be significantly reduced. Moreover, high-radix switches are an attractive option to improve the network performance in terms of latency, since hop count is also reduced. However, there are some problems related to the integration scale to design such single-chip switches. In this paper we discuss key issues and evaluate an interesting alternative for building high-radix switches going beyond the integration scale bounds. The idea basically consists in combining several current smaller single-chip swi…
The helicoidal magnetic generator
2016
Recently helicoidal generator for the exploitation of sea wave energy has been proposed. This device can convert both the vertical and rotational movement of seawaves. The electrical energy generated by such a device must be converted and conditioned in order to match the instantaneous utility requirements and a power link from the sea to an interconnection is needed. In this paper, the authors propose a mathematical model of this device and preliminarily present a prototype of the machine.
Topological insulator nanoribbon Josephson junctions: Evidence for size effects in transport properties
2020
We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width of the nanoribbon. Because the topological surface states extend over the entire circumference of the nanoribbon, the superconducting transport associated to them is carried by modes on both the top and bottom surfaces of the nanoribbon. We show that the $J_c$ reduction as a function of the nanoribbons width can be accounted for by assuming that on…
Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition
2020
Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…
Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage
2016
Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.
Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy
2019
International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…