Search results for "evolutionary computation"

showing 10 items of 113 documents

Scalability of using Restricted Boltzmann Machines for Combinatorial Optimization

2014

Abstract Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number of fitness evaluations and the CPU time scale with problem size and complexity. The results are compared to the Bayesian Optimization Algorithm (BOA), a state-of-the-art multivariate EDA, and the Dependency Tree Algorithm (DTA), which uses a simpler probability model requiring less computati…

FOS: Computer and information sciencesMathematical optimizationInformation Systems and ManagementOptimization problemGeneral Computer SciencePopulationComputer Science::Neural and Evolutionary Computation0211 other engineering and technologiesBoltzmann machine02 engineering and technologyManagement Science and Operations ResearchIndustrial and Manufacturing EngineeringEvolutionary computation0202 electrical engineering electronic engineering information engineeringNeural and Evolutionary Computing (cs.NE)educationMathematicseducation.field_of_study021103 operations researchArtificial neural networkI.2.6I.2.8Computer Science - Neural and Evolutionary ComputingEstimation of distribution algorithmModeling and SimulationScalabilityCombinatorial optimization020201 artificial intelligence & image processingI.2.6; I.2.8Algorithm
researchProduct

Depth-Adapted CNN for RGB-D cameras

2020

Conventional 2D Convolutional Neural Networks (CNN) extract features from an input image by applying linear filters. These filters compute the spatial coherence by weighting the photometric information on a fixed neighborhood without taking into account the geometric information. We tackle the problem of improving the classical RGB CNN methods by using the depth information provided by the RGB-D cameras. State-of-the-art approaches use depth as an additional channel or image (HHA) or pass from 2D CNN to 3D CNN. This paper proposes a novel and generic procedure to articulate both photometric and geometric information in CNN architecture. The depth data is represented as a 2D offset to adapt …

FOS: Computer and information sciencesOffset (computer science)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Coordinate systemComputer Science::Neural and Evolutionary ComputationComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyConvolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineering[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]Computer visionInvariant (mathematics)business.industry[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO]020207 software engineeringWeightingSpatial coherenceComputer Science::Computer Vision and Pattern RecognitionRGB color modelArtificial intelligencebusinessLinear filter
researchProduct

Structural bias in population-based algorithms

2014

Abstract Challenging optimisation problems are abundant in all areas of science and industry. Since the 1950s, scientists have responded to this by developing ever-diversifying families of ‘black box’ optimisation algorithms. The latter are designed to be able to address any optimisation problem, requiring only that the quality of any candidate solution can be calculated via a ‘fitness function’ specific to the problem. For such algorithms to be successful, at least three properties are required: (i) an effective informed sampling strategy, that guides the generation of new candidates on the basis of the fitnesses and locations of previously visited candidates; (ii) mechanisms to ensure eff…

FOS: Computer and information sciencesQA75Mathematical optimizationInformation Systems and ManagementPopulation-based algorithmsFitness landscapemedia_common.quotation_subjectPopulationStructural biasEvolutionary computationPopulation-based algorithmEvolutionary computationTheoretical Computer ScienceArtificial IntelligenceBlack boxEconometricsQuality (business)OptimisationAlgorithmic designNeural and Evolutionary Computing (cs.NE)educationMathematicsmedia_commonta113education.field_of_studyFitness functionPopulation sizeComputer Science - Neural and Evolutionary ComputingComputer Science ApplicationsControl and Systems EngineeringAlgorithmSoftwarePopulation variance
researchProduct

An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems

2015

This paper presents a new preference based interactive evolutionary algorithm (I-SIBEA) for solving multiobjective optimization problems using weighted hypervolume. Here the decision maker iteratively provides her/his preference information in the form of identifying preferred and/or non-preferred solutions from a set of nondominated solutions. This preference information provided by the decision maker is used to assign weights of the weighted hypervolume calculation to solutions in subsequent generations. In any generation, the weighted hypervolume is calculated and solutions are selected to the next generation based on their contribution to the weighted hypervolume. The algorithm is compa…

Flexibility (engineering)Set (abstract data type)Mathematical optimizationComputer scienceBenchmark (computing)Evolutionary algorithmmultiobjective optimizationInteractive evolutionary computationevolutionary algorithmsinteractive methodsMulti-objective optimizationEvolutionary programmingPreference
researchProduct

Hierarchical Evolutionary Algorithms and Noise Compensation via Adaptation

2007

Hierarchical Evolutionary Algorithms (HEAs) are Nested Algorithms composed by two or more Evolutionary Algorithms having the same fitness but different populations. More specifically, the fitness of a Higher Level Evolutionary Algorithm (HLEA) is the optimal fitness value returned by a Lower Level Evolutionary Algorithm (LLEA). Due to their algorithmic formulation, the HEAs can be efficiently implemented in Min-Max problems. In this chapter the application of the HEAs is shown for two different Min-Max problems in the field of Structural Optimization. These two problems are the optimal design of an electrical grounding grid and an elastic structure. Since the fitness of a HLEA is given by a…

Human-based evolutionary computationComputer scienceCultural algorithmGenetic algorithmEvolutionary algorithmMemetic algorithmInteractive evolutionary computationAlgorithmEvolutionary computationEvolutionary programming
researchProduct

A novel framework for MR image segmentation and quantification by using MedGA

2019

BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and…

ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAAdaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imagingComputer scienceAdaptive thresholdingImage ProcessingDecision MakingNeurosurgeryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHealth InformaticsContext (language use)Adaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imaging; Algorithms; Brain Neoplasms; Computer Simulation; Decision Making; Female; Humans; Image Processing Computer-Assisted; Leiomyoma; Neurosurgery; Radiosurgery; Software; Magnetic Resonance ImagingEvolutionary computationRadiosurgeryING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciencesComputer-Assisted0302 clinical medicineHistogramQuantitative medical imagingmedicineImage Processing Computer-AssistedHumansSegmentationComputer SimulationHistogram equalizationmedicine.diagnostic_testLeiomyomaSettore INF/01 - Informaticabusiness.industryBrain NeoplasmsINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionImage segmentationThresholdingComputer Science ApplicationsBimodal intensity distributionImage pre-processingTransformation (function)Magnetic Resonance imagingFemaleArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsSoftware
researchProduct

"Table 35" of "Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV"

2018

PBAR/P ratio in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV.

InclusivePB PB --> PBAR XPB PB --> P XSIG/SIG2760.0Astrophysics::High Energy Astrophysical PhenomenaComputer Science::Neural and Evolutionary ComputationHigh Energy Physics::PhenomenologyIntegrated Cross SectionHigh Energy Physics::ExperimentCross SectionNuclear Experiment
researchProduct

"Table 33" of "Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV"

2018

pi-/pi+ ratio in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV.

InclusiveSIG/SIG2760.0Astrophysics::High Energy Astrophysical PhenomenaComputer Science::Neural and Evolutionary ComputationHigh Energy Physics::PhenomenologyIntegrated Cross SectionHigh Energy Physics::ExperimentPB PB --> PI+ XCross SectionNuclear ExperimentPB PB --> PI- X
researchProduct

"Table 34" of "Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV"

2018

K-/K+ ratio in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV.

InclusiveStrange ProductionSIG/SIG2760.0Astrophysics::High Energy Astrophysical PhenomenaPB PB --> K- XComputer Science::Neural and Evolutionary ComputationHigh Energy Physics::PhenomenologyIntegrated Cross SectionHigh Energy Physics::ExperimentPB PB --> K+ XCross SectionNuclear Experiment
researchProduct

An ant colony optimization-based fuzzy predictive control approach for nonlinear processes

2015

In this paper, a new approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the ant colony optimization (ACO) is proposed. On-line adaptive fuzzy identification is introduced to identify the system parameters. These parameters are used to calculate the objective function based on a predictive approach and structure of RST control. Then the optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to determine optimal controller parameters of RST control. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, where the proposed approach provides better performances compared with p…

Information Systems and ManagementMeta-optimizationOptimization problemComputer scienceAnt colony optimization algorithmsComputer Science::Neural and Evolutionary ComputationProcess (computing)Computer Science ApplicationsTheoretical Computer ScienceNonlinear systemModel predictive controlArtificial IntelligenceControl and Systems EngineeringControl theoryMetaheuristicSoftwareInformation Sciences
researchProduct