Search results for "evolutionary computation"

showing 10 items of 113 documents

Scatter Search for the Point-Matching Problem in 3D Image Registration

2008

Scatter search is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in the 1960s for combining decision rules and problem constraints, such as the surrogate constraint method, scatter search uses strategies for combining solution vectors that have proved effective in a variety of problem settings. We present a scatter-search implementation designed to find high-quality solutions for the 3D image-registration problem, which has many practical applications. This problem arises in computer vision applications when finding a correspondence or transformation …

education.field_of_studyComputer scienceHeuristic (computer science)business.industryPopulationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral EngineeringImage registrationPoint set registrationMachine learningcomputer.software_genreEvolutionary computationNonlinear programmingRobustness (computer science)Artificial intelligenceeducationbusinessMetaheuristicAlgorithmcomputerINFORMS Journal on Computing
researchProduct

Towards Automatic Testing of Reference Point Based Interactive Methods

2016

In order to understand strengths and weaknesses of optimization algorithms, it is important to have access to different types of test problems, well defined performance indicators and analysis tools. Such tools are widely available for testing evolutionary multiobjective optimization algorithms. To our knowledge, there do not exist tools for analyzing the performance of interactive multiobjective optimization methods based on the reference point approach to communicating preference information. The main barrier to such tools is the involvement of human decision makers into interactive solution processes, which makes the performance of interactive methods dependent on the performance of huma…

aspiration level021103 operations researchComputer sciencebusiness.industryComputer Science::Neural and Evolutionary Computation0211 other engineering and technologiespreference information02 engineering and technologyMachine learningcomputer.software_genreMulti-objective optimizationTest (assessment)testing framework0202 electrical engineering electronic engineering information engineeringdecision maker’s preferencesmultiobjective optimization020201 artificial intelligence & image processingEMOPerformance indicatorArtificial intelligencebusinesscomputerAutomatic testing
researchProduct

Enabling XCSF to cope with dynamic environments via an adaptive error threshold

2020

The learning classifier system XCSF is a variant of XCS employed for function approximation. Although XCSF is a promising candidate for deployment in autonomous systems, its parameter dependability imposes a significant hurdle, as a-priori parameter optimization is not feasible for complex and changing environmental conditions. One of the most important parameters is the error threshold, which can be interpreted as a target bound on the approximation error and has to be set according to the approximated function. To enable XCSF to reliably approximate functions that change during runtime, we propose the use of an error threshold, which is adapted at run-time based on the currently achieved …

Learning classifier systemComputer scienceError thresholdComputer Science::Neural and Evolutionary Computation0102 computer and information sciences02 engineering and technologyFunction (mathematics)01 natural sciencesSet (abstract data type)Function approximation010201 computation theory & mathematicsApproximation error0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAlgorithmProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
researchProduct

A novel abstraction for swarm intelligence: particle field optimization

2016

Particle swarm optimization (PSO) is a popular meta-heuristic for black-box optimization. In essence, within this paradigm, the system is fully defined by a swarm of "particles" each characterized by a set of features such as its position, velocity and acceleration. The consequent optimized global best solution is obtained by comparing the personal best solutions of the entire swarm. Many variations and extensions of PSO have been developed since its creation in 1995, and the algorithm remains a popular topic of research. In this work we submit a new, abstracted perspective of the PSO system, where we attempt to move away from the swarm of individual particles, but rather characterize each …

Mathematical optimizationMeta-optimizationbusiness.industryComputer scienceComputingMethodologies_MISCELLANEOUSComputer Science::Neural and Evolutionary ComputationParticle swarm optimizationSwarm behaviour02 engineering and technology010502 geochemistry & geophysics01 natural sciencesSwarm intelligenceField (computer science)Artificial Intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceMulti-swarm optimizationbusinessMetaheuristic0105 earth and related environmental sciencesAbstraction (linguistics)Autonomous Agents and Multi-Agent Systems
researchProduct

Artificial Neural Networks and Linear Discriminant Analysis:  A Valuable Combination in the Selection of New Antibacterial Compounds

2004

A set of topological descriptors has been used to discriminate between antibacterial and nonantibacterial drugs. Topological descriptors are simple integers calculated from the molecular structure represented in SMILES format. The methods used for antibacterial activity discrimination were linear discriminant analysis (LDA) and artificial neural networks of a multilayer perceptron (MLP) type. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval of the discriminant function and the output value of the neural network versus these values. Pharmacological distribution diagrams (PDD) were used as a visualizing technique for the i…

Artificial neural networkChemistrybusiness.industryComputer Science::Neural and Evolutionary ComputationDiscriminant AnalysisPattern recognitionGeneral MedicineMicrobial Sensitivity TestsGeneral ChemistryFunction (mathematics)Interval (mathematics)Linear discriminant analysisPlot (graphics)Anti-Bacterial AgentsQuantitative Biology::Cell BehaviorComputer Science ApplicationsComputational Theory and MathematicsDiscriminative modelDiscriminant function analysisMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinessInformation SystemsMathematicsJournal of Chemical Information and Computer Sciences
researchProduct

Particle Swarm Optimization as a New Measure of Machine Translation Efficiency

2018

The present work proposes a new approach to measuring efficiency of evolutionary algorithm-based Machine Translation. We implement some attributes of evolutionary algorithms performing cosine similarity objective function of a Particle Swarm Optimization (PSO) algorithm then, we evaluate an English text set for translation precision into the Spanish text as a simulated benchmark, and explore the backward process. Our results show that PSO algorithm can be used for translation of multiple language sentences with one identifier only, in other words the technology presented is language-pair independent. Specifically, we indicate that our cosine similarity objective function improves the veloci…

Machine translationComputer scienceComputer Science::Neural and Evolutionary ComputationCosine similarityEvolutionary algorithmParticle swarm optimizationComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)020206 networking & telecommunications02 engineering and technologyTranslation (geometry)computer.software_genreEvolutionary algorithmsSet (abstract data type)IdentifierMachine Translation0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingCosine similarityAlgorithmcomputer
researchProduct

Ensemble strategies in Compact Differential Evolution

2011

Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …

ta113Mathematical optimizationStochastic processComputer scienceDifferential evolutionCrossoverGlobal optimizationEvolutionary computation2011 IEEE Congress of Evolutionary Computation (CEC)
researchProduct

Restricted Neighborhood Search Clustering Revisited: An Evolutionary Computation Perspective

2013

Protein-protein interaction networks have been broadly studied in the last few years, in order to understand the behavior of proteins inside the cell. Proteins interacting with each other often share common biological functions or they participate in the same biological process. Thus, discovering protein complexes made of groups of proteins strictly related, can be useful to predict protein functions. Clustering techniques have been widely employed to detect significative biological complexes. In this paper, we integrate one of the most popular network clustering techniques, namely the Restricted Neighborhood Search Clustering (RNSC), with evolutionary computation. The two cost functions in…

business.industryPerspective (graphical)Neighborhood searchBiologyMachine learningcomputer.software_genreBudding yeastEvolutionary computationOrder (biology)Genetic algorithmNetwork clusteringArtificial intelligencebusinessCluster analysiscomputer
researchProduct

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

2021

[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulat…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsCalibration (statistics)Computer Science::Neural and Evolutionary ComputationNuclear physicsFOS: Physical sciencesTopology (electrical circuits)01 natural sciencesConvolutional neural networkAtomicPartícules (Física nuclear)High Energy Physics - ExperimentInteraccions electró-positróTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)NuclearNuclear Matrixlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsElectron-positron interactionsMathematical PhysicsParticles (Nuclear physics)PhysicsQuantum Physics010308 nuclear & particles physicsbusiness.industryEvent (computing)Network onSIGNAL (programming language)MolecularFísicaPattern recognitionDetectorInstrumentation and Detectors (physics.ins-det)Beta DecayDouble beta decayNuclear & Particles PhysicsDoble desintegració betaIdentification (information)lcsh:QC770-798Física nuclearArtificial intelligencebusinessJournal of High Energy Physics
researchProduct

Deep Motion Model for Pedestrian Tracking in 360 Degrees Videos

2019

This paper proposes a deep convolutional neural network (CNN) for pedestrian tracking in 360◦ videos based on the target’s motion. The tracking algorithm takes advantage of a virtual Pan-Tilt-Zoom (vPTZ) camera simulated by means of the 360◦ video. The CNN takes in input a motion image, i.e. the difference of two images taken by using the vPTZ camera at different times by the same pan, tilt and zoom parameters. The CNN predicts the vPTZ camera parameter adjustments required to keep the target at the center of the vPTZ camera view. Experiments on a publicly available dataset performed in cross-validation demonstrate that the learned motion model generalizes, and that the proposed tracking algo…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni360 degree videobusiness.industryComputer scienceTrackingComputer Science::Neural and Evolutionary ComputationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020206 networking & telecommunications02 engineering and technologyPedestrianTracking (particle physics)Convolutional neural networkMotion (physics)Motion0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusinessCNNequirectangularComputingMethodologies_COMPUTERGRAPHICS
researchProduct