Search results for "expression profiling"
showing 10 items of 658 documents
Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer
2018
Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although…
Transcriptome Analysis of PA Gain and Loss of Function Mutants
2017
Functional genomics has become a forefront methodology for plant science thanks to the widespread development of microarray technology. While technical difficulties associated with the process of obtaining raw expression data have been diminishing, allowing the appearance of tremendous amounts of transcriptome data in different databases, a common problem using "omic" technologies remains: the interpretation of these data and the inference of its biological meaning. In order to assist to this complex task, a wide variety of software tools have been developed. In this chapter we describe our current workflow of the application of some of these analyses. We have used it to compare the transcr…
Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells.
2018
Abstract Background: Curcumin (CC) exerts polyvalent pharmacological actions and multi-target effects, including pain relief and anti-nociceptive activity. In combination with Boswellia serrata extract (BS), curcumin shows greater efficacy in knee osteoarthritis management, presumably due to synergistic interaction of the ingredients. Aim: To elucidate the molecular mechanisms underlying the analgesic activity of curcumin and its synergistic interaction with BS. Methods: We performed gene expression profiling by transcriptome-wide mRNA sequencing in human T98G neuroglia cells treated with CC (Curamed), BS, and the combination of CC and BS (CC-BS; Curamin), followed by interactive pathways a…
Contribution of allelic imbalance to colorectal cancer
2018
Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point muta…
Identification of novel drug resistance mechanisms by genomic and transcriptomic profiling of glioblastoma cells with mutation-activated EGFR.
2021
Abstract Aims Epidermal growth factor receptor (EGFR) is not only involved in carcinogenesis, but also in chemoresistance. We characterized U87.MGΔEGFR glioblastoma cells with constitutively active EGFR due to deletion at the ligand binding domain in terms of gene expression profiling and chromosomal aberrations. Wild-type U87.MG cells served as control. Materials and methods RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel drug resistance mechanisms related to expression of mutation activated EGFR. Chromosomal aberrations were characterized by multicolor fluorescence in situ hybridization (mFISH) and array comparative genomic hybridization (…
Response to metals treatment of Fra1, a member of the AP-1 transcription factor family, in P. lividus sea urchin embryos
2018
Abstract Lithium (Li), Nickel (Ni), and Zinc (Zn) are metals normally present in the seawater, although they can have adverse effects on the marine ecosystem at high concentrations by interfering with many biological processes. These metals are toxic for sea urchin embryos, affecting their morphology and developmental pathways. In particular, they perturb differently the correct organization of the embryonic axes (animal-vegetal, dorso-ventral): Li is a vegetalizing agent and Ni disrupts the dorso-ventral axis, while Zn has an animalizing effect. To deeply address the response of Paracentrotus lividus embryos to these metals, we studied the expression profiling of Pl-Fra transcription facto…
Retene causes multifunctional transcriptomic changes in the heart of rainbow trout (Oncorhynchus mykiss) embryos
2015
Fish are particularly sensitive to aryl hydrocarbon receptor (AhR)-mediated developmental toxicity. The molecular mechanisms behind these adverse effects have remained largely unresolved in salmonids, and for AhR-agonistic polycyclic aromatic hydrocarbons (PAHs). This study explored the cardiac transcriptome of rainbow trout (Oncorhynchus mykiss) eleuteroembryos exposed to retene, an AhR-agonistic PAH. The embryos were exposed to retene (nominal concentration 32 μg/L) and control, their hearts were collected before, at and after the onset of the visible signs of developmental toxicity, and transcriptomic changes were studied by microarray analysis. Retene up- or down-regulated 122 genes. Th…
Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer.
2021
doi: 10.1053/j.gastro.2021.04.042 Background & Aims Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. Methods Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue sam…
The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins
2019
The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…
A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction
2019
Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor express…