Search results for "expression"

showing 10 items of 5168 documents

Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-fa…

2016

AbstractWe systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aber…

0301 basic medicineATP Binding Cassette Transporter Subfamily BDNA RepairDown-RegulationChromosomal translocationABCC5ArticleTranslocation GeneticTranscriptome03 medical and health sciences0302 clinical medicineATP Binding Cassette Transporter Subfamily G Member 2HumansGeneIn Situ Hybridization FluorescenceChromosome 7 (human)GeneticsComparative Genomic HybridizationGenomeLeukemiaMultidisciplinarybiologySequence Analysis RNAGene Expression ProfilingGenomicsNeoplasm ProteinsMultiple drug resistanceGene expression profiling030104 developmental biologyDrug Resistance Neoplasm030220 oncology & carcinogenesisbiology.proteinTranscriptomeComparative genomic hybridizationScientific Reports
researchProduct

Cytotoxicity of sesquiterpene alkaloids from Nuphar plants toward sensitive and drug-resistant cell lines.

2018

Multi-drug resistance (MDR) is a critical problem in cancer chemotherapy. MDR causes the overexpression of ATP-binding cassette (ABC) transporters and mutations in tumor suppressor genes and oncogenes. To tackle this issue, in this study, we focused on Nuphar plants, which have been traditionally used as food. Sesquiterpene alkaloids (1–3) were isolated from N. japonicum and dimeric sesquiterpene thioalkaloids (4–10) were isolated from N. pumilum. P-glycoprotein-overexpressing CEM/ADR5000 cells were cross-resistant to 6,6′-dihydroxythiobinupharidine (10). Using in silico molecular docking, we calculated the binding energies and simulated the interactions of these compounds with the correspo…

0301 basic medicineATP Binding Cassette Transporter Subfamily BTumor suppressor geneCell SurvivalATP-binding cassette transporterNuphar03 medical and health sciences0302 clinical medicineAlkaloidsCell Line TumorNeoplasmsATP Binding Cassette Transporter Subfamily G Member 2HumansATP Binding Cassette Transporter Subfamily B Member 1Binding siteCytotoxicityGeneOncogeneChemistryPlant ExtractsABCB5General MedicineMolecular biologyAntineoplastic Agents PhytogenicNeoplasm ProteinsGene Expression Regulation NeoplasticMolecular Docking Simulation030104 developmental biologyCell cultureDrug Resistance Neoplasm030220 oncology & carcinogenesisSesquiterpenesFood ScienceFoodfunction
researchProduct

Role of AxyZ Transcriptional Regulator in Overproduction of AxyXY-OprZ Multidrug Efflux System in Achromobacter Species Mutants Selected by Tobramycin

2017

ABSTRACT AxyXY-OprZ is an RND-type efflux system that confers innate aminoglycoside resistance to Achromobacter spp. We investigated here a putative TetR family transcriptional regulator encoded by the axyZ gene located upstream of axyXY-oprZ . An in-frame axyZ gene deletion assay led to increased MICs of antibiotic substrates of the efflux system, including aminoglycosides, cefepime, fluoroquinolones, tetracyclines, and erythromycin, indicating that the product of axyZ negatively regulates expression of axyXY-oprZ . Moreover, we identified an amino acid substitution at position 29 of AxyZ (V29G) in a clinical Achromobacter strain that occurred during the course of chronic respiratory tract…

0301 basic medicineAchromobacterCefepime030106 microbiologyPopulationAchromobacterMicrobial Sensitivity TestsBiologymedicine.disease_causeMicrobiology03 medical and health scienceschemistry.chemical_compoundAntibiotic resistanceBacterial ProteinsMechanisms of ResistanceDrug Resistance Multiple BacterialTobramycinmedicineHumansPharmacology (medical)TetRAmino Acid Sequence[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]educationComputingMilieux_MISCELLANEOUSPharmacologyeducation.field_of_studyPseudomonas aeruginosaMembrane Transport Proteins[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGene Expression Regulation Bacterialbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyAnti-Bacterial Agents3. Good healthInfectious DiseasesAmino Acid SubstitutionchemistryPseudomonas aeruginosaTobramycinTrans-ActivatorsEffluxGene DeletionBacterial Outer Membrane Proteinsmedicine.drugAntimicrobial Agents and Chemotherapy
researchProduct

Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells

2017

Two-dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three-dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as "spheroids," and we have previously demonstrated that spheroids from adipose-derived stem cells (S-ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S-ASCs to further understand the molecular mechanisms underlying their stemness pr…

0301 basic medicineAdipose stem cellPhysiologyCellular differentiationClinical BiochemistryCell Culture TechniquesAdipose tissueBiology03 medical and health sciences0302 clinical medicineOsteogenesisSpheroids CellularLong-term cultureMiR-142-3pmicroRNAAdipocytesHumansInduced pluripotent stem cellCell ProliferationAdipogenesisStem CellsGene Expression Regulation DevelopmentalCell DifferentiationCell BiologyIn vitroCell biologyMicroRNAs030104 developmental biologyMesenchymal differentiationCell cultureAdipogenesis030220 oncology & carcinogenesisStem cellMiRNA
researchProduct

Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone

2016

Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thu…

0301 basic medicineAdult neurogenesisMice0302 clinical medicineNeural Stem CellsCell MovementLateral VentriclesPromoter Regions GeneticCells CulturedMOUSE-BRAINReceptors NotchOligodendrocytesNeurogenesisCell DifferentiationLINEAGEAnatomyOlfactory BulbNeural stem cellCell biologyNeuroepithelial cellAdult Stem CellsOligodendrogliaDIFFERENTIATIONEnhancer Elements Geneticmedicine.anatomical_structureGene Knockdown TechniquesMolecular MedicineSPINAL-CORDStem cellSUBCELLULAR-LOCALIZATIONProtein BindingAdult stem cellOLIG2NeurogenesisSubventricular zoneBiology03 medical and health sciencesNeurosphereProx1medicineAnimalsCell LineageOLFACTORY-BULBBody PatterningHomeodomain ProteinsTumor Suppressor ProteinsCell BiologyMAMMALIAN BRAINOligodendrocyte Transcription Factor 2030104 developmental biologyNeuropoiesisPROGENITOR CELLSGene Expression Regulationnervous system030217 neurology & neurosurgeryDevelopmental BiologyStem Cells
researchProduct

Mitochondrial dynamics and metabolism in induced pluripotency.

2020

Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are control…

0301 basic medicineAdultAgingCell typeSomatic cellCellInduced Pluripotent Stem CellsBiologyBiochemistryMitochondrial Dynamics03 medical and health sciences0302 clinical medicineEndocrinologyGeneticsmedicineHumansInduced pluripotent stem cellMolecular BiologyCell DifferentiationCell BiologyCellular ReprogrammingPhenotypeCell biology030104 developmental biologymedicine.anatomical_structureEctopic expressionReprogramming030217 neurology & neurosurgeryFunction (biology)Signal TransductionExperimental gerontology
researchProduct

Dynamic clonal remodelling in breast cancer metastases is associated with subtype conversion

2019

Background: Changes in the clinical subtype (CS) and intrinsic subtype (IS) between breast cancer (BC) metastases and corresponding primary tumours have been reported. However, their relationship with tumour genomic changes remains poorly characterised. Here, we analysed the association between genomic remodelling and subtype conversion in paired primary and metastatic BC samples. Methods: A total of 57 paired primary and metastatic tumours from GEICAM/2009-03 (ConvertHER, NCT01377363) study participants with centrally assessed CS (n = 57) and IS (n = 46) were analysed. Targeted capture and next-generation sequencing of 202 genes on formalin-fixed paraffin-embedded samples was performed. Th…

0301 basic medicineAdultCancer ResearchSkin NeoplasmsBioinformaticsBone NeoplasmsBreast Neoplasmsmedicine.disease_causeMetastatic tumours03 medical and health sciences0302 clinical medicineBreast cancerBreast cancermedicineBiomarkers TumorHumansProspective StudiesPAM50AgedAged 80 and overMutationIntrinsic subtypebusiness.industryHuman epidermal growth factorBrain NeoplasmsClonal architectureHigh-Throughput Nucleotide SequencingClonal remodellingMiddle Agedmedicine.diseasePrognosisGene Expression Regulation Neoplastic030104 developmental biologyOncology030220 oncology & carcinogenesisLymphatic MetastasisCancer cellMutationCancer researchFemaleNeoplasm Recurrence LocalClinical subtypeHeterogeneitybusinessHormoneFollow-Up Studies
researchProduct

Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment

2018

Polycystic ovarian syndrome (PCOS) is a common reproductive disorder frequently associated with a substantial risk factor for ovarian hyperstimulation syndrome (OHSS). Dopamine receptor 2 (D2) agonists, like cabergoline (Cb2), have been used to reduce the OHSS risk. However, lutein granulosa cells (LGCs) from PCOS patients treated with Cb2 still show a deregulated dopaminergic tone (decreased D2 expression and low dopamine production) and increased vascularization compared to non-PCOS LGCs. Therefore, to understand the PCOS ovarian physiology, it is important to explore the mechanisms that underlie syndrome based on the therapeutic effects of Cb2. Here, LGCs from non-PCOS and PCOS patients …

0301 basic medicineAdultEmbryologymedicine.medical_specialtyendocrine systemCabergolineendocrine system diseasesOvarian hyperstimulation syndromeAKT103 medical and health scienceschemistry.chemical_compound0302 clinical medicineEndocrinologyInternal medicineCabergolineLuteal CellsmedicineHumansErgolines030219 obstetrics & reproductive medicineGranulosa Cellsbusiness.industryDopaminergicOvaryObstetrics and Gynecologynutritional and metabolic diseasesCell Biologymedicine.diseasefemale genital diseases and pregnancy complicationsVascular endothelial growth factorVascular endothelial growth factor A030104 developmental biologyEndocrinologyReproductive MedicinechemistryGene Expression RegulationDopamine receptorDopaminergic synapseCase-Control StudiesDopamine AgonistsFemalebusinessTranscriptomeBiomarkersmedicine.drugPolycystic Ovary Syndrome
researchProduct

Notch-1 decreased expression contributes to leptin receptor downregulation in nasal epithelium from allergic turbinates

2019

Abstract BACKGROUND: Allergic rhinitis is characterized by a remodeling of nasal epithelium. Since the Notch and TGF-β signaling pathways are known to be involved in cell differentiation and remodeling processes and leptin adipokine has already been identified as a marker for homeostasis in human bronchial and nasal epithelial cells of asthmatics, roles played by these pathways have been investigated for chronic allergic rhinitis. METHODS: The leptin/leptin receptor expression has been investigated in a study with 40 biopsies from allergic (AR, n = 18) and non-allergic (C, n = 22) inferior turbinates, using immunohistochemistry, immunofluorescence staining and RT-PCR. In addition, extracts …

0301 basic medicineAdultLeptinMalemedicine.medical_specialtyBiopsyPrimary Cell CultureAdipokineTurbinatesCell LineTransforming Growth Factor beta103 medical and health sciences0302 clinical medicineDownregulation and upregulationInternal medicinemedicineHomeostasisHumansRNA MessengerReceptor Notch1610 Medicine & healthReceptorMolecular BiologyNotch 1Leptin receptorChemistryLeptindigestive oral and skin physiologyEpithelial CellsMiddle AgedRhinitis AllergicAllergic rhinitis Epithelium Leptin NotchEpitheliumNasal Mucosa030104 developmental biologyEndocrinologymedicine.anatomical_structureGene Expression Regulation030220 oncology & carcinogenesisCase-Control StudiesMolecular MedicineReceptors LeptinFemaleSignal transductionSignal Transduction
researchProduct

Cell quality evaluation with gene expression analysis of spheroids (3D) and adherent (2D) adipose stem cells.

2021

Adipose stem cells (ASCs) represent a reliable source of stem cells with a widely demonstrated potential in regenerative medicine and tissue engineering applications. New recent insights suggest that three-dimensional (3D) models may closely mimic the native tissue properties; spheroids from adipose derived stem cells (SASCs) exhibit enhanced regenerative abilities compared with those of 2D models. Stem cell therapy success is determined by “cell-quality”; for this reason, the involvement of stress signals and cellular aging need to be further investigated. Here, we performed a comparative analysis of genes connected with stemness, aging, telomeric length and oxidative stress, in 3D and 2D …

0301 basic medicineAdultMaleAgingAdolescentDNA RepairCell Survivalmedicine.medical_treatmentCellCell Culture TechniquesCell- and Tissue-Based TherapyAdipose tissueBiologyRegenerative medicine03 medical and health sciencesYoung Adult0302 clinical medicineTissue engineeringSpheroids CellularGene expressionGeneticsmedicineAdipocytesCell AdhesionHumansSirtuinsCells CulturedCyclin-Dependent Kinase Inhibitor p16AgedTissue EngineeringStem CellsSpheroidRNA-Binding ProteinsTelomere HomeostasisGeneral MedicineStem-cell therapyMiddle AgedAdipose stem cellsCell biologyOxidative Stress030104 developmental biologymedicine.anatomical_structureAdipose Tissue030220 oncology & carcinogenesisFemaleStem cellStem Cell TransplantationGene
researchProduct