Search results for "extracellular vesicles"
showing 10 items of 206 documents
Emerging insights on the biological impact of extracellular vesicle-associated ncRNAs in multiple Myeloma
2020
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnos…
2021
Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed to characterize the kinetics and localization of DNA associated with EVs. EVs were separated from human plasma using size exclusion chromatography or immuno-affinity capture for CD9+, CD63+, and CD81+ EVs. DNA was quantified with an ultra-sensitive qPCR assay targeting repetitive LINE elements, with or without DNase digestion. This model shows that a minute part of circulating cell-free DNA is asso…
Extracellular vesicles as miRNA nano-shuttles : dual role in tumor progression
2018
[EN] Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic pote…
Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance
2019
Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-res…
Extracellular Vesicles Shed by Melanoma Cells Contain a Modified Form of H1.0 Linker Histone and H1.0 mRNA-binding Proteins
2016
Extracellular vesicles (EVs) are shed in the extracellular environment by both prokaryotes and eukaryotes. Although produced from both normal and cancer cells, malignant cells release a much higher amount of EVs, which also contain tumor-specific proteins and RNAs. We previously found that G26/24 oligodendroglioma cells shed EVs that contain the pro-apoptotic factors FasL and TRAIL1-2. Interestingly, G26/24 release, via EVs, extracellular matrix remodelling proteases3, and H1° histone protein4, and mRNA. To shed further light on the role of EVs in discarding proteins and mRNAs otherwise able to counteract proliferative signals, we studied a melanoma cell line (A375). We found that also thes…
Colorectal Cancer Cell Line SW480 and SW620 Released Extravascular Vesicles: Focus on Hypoxia-induced Surface Proteome Changes
2018
Background/aim Extravascular vesicle (EV) proteome closely reflects the proteome of the cell of origin. Therefore, cancer cell-derived EV proteomic analysis could help in identifying cancer biomarkers. This study's goal was to investigate hypoxia-induced proteomic changes in EV released from hypoxic human isogenic non-metastatic colorectal cancer cells SW480 and metastatic colorectal cancer cells SW620. Materials and methods EV were characterized by western blot, transmission electron microscopy, proteomic analysis using liquid chromatography time-of-flight-mass spectrometry and quantified by an label-free intensity-based absolute quantitation (iBAQ) approach. Results A total of 16 proteins…
Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model
2020
Bacterial EVs have been related to inter-kingdom communication between probiotic/pathogenic bacteria and their hosts. Our aim was to investigate the transcytosis process of B. subtilis EVs using an in vitro intestinal epithelial cell model. In this study, using Confocal Laser Scanning Microscopy, we report that uptake and internalization of CFSE-labeled B. subtilis EVs (115 nm ± 27 nm) by Caco-2 cells are time-dependent. To study the transcytosis process we used a transwell system and EVs were quantified in the lower chamber by Fluorescence and Nanoparticle Tracking Analysis measurements. Intact EVs are transported across a polarized cell monolayer at 60–120 min and increased after 240 min …
An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling
2017
Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as…
A novel 3D heterotypic spheroid model for studying extracellular vesicle-mediated tumour and immune cell communication
2017
Cancer-derived extracellular vesicles (EVs) have emerged as important mediators of tumour-host interactions, and they have been shown to exert various functional effects in immune cells. In most of the studies on human immune cells, EVs have been isolated from cancer cell culture medium or patients' body fluids and added to the immune cell cultures. In such a setting, the physiological relevance of the chosen EV concentration is unknown and the EV isolation method and the timing of EV administration may bias the results. In the current study we aimed to develop an experimental cell culture model to study EV-mediated effects in human T and B cells at conditions mimicking the tumour microenvi…
Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging
2017
Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are curre…