Search results for "funktio"
showing 10 items of 319 documents
Weighted estimates for diffeomorphic extensions of homeomorphisms
2019
Let $\Omega \subset \mbr^2$ be an internal chord-arc domain and $\varphi : \mbs^1 \rightarrow \partial \Omega$ be a homeomorphism. Then there is a diffeomorphic extension $h : \mbd \rightarrow \Omega$ of $\varphi .$ We study the relationship between weighted integrability of the derivatives of $h$ and double integrals of $\varphi$ and of $\varphi^{-1} .$
A density result on Orlicz-Sobolev spaces in the plane
2018
We show the density of smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ in the Orlicz-Sobolev spaces $L^{k,\Psi}(\Omega)$ for bounded simply connected planar domains $\Omega$ and doubling Young functions $\Psi$.
On the notion of parallel transport on RCD spaces
2019
We propose a general notion of parallel transport on RCD spaces, prove an unconditioned uniqueness result and existence under suitable assumptions on the space. peerReviewed
Approximation by uniform domains in doubling quasiconvex metric spaces
2020
We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces
2017
In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed
A maximal Function Approach to Two-Measure Poincaré Inequalities
2018
This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…
Sobolev Extension on Lp-quasidisks
2021
AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.
Traces of weighted function spaces: dyadic norms and Whitney extensions
2017
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950's. In this paper we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces (of fractional order of smoothness), based on integral averages on dyadic cubes, which is well adapted to extending functions using the Whitney extension operator.
Quasispheres and metric doubling measures
2018
Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere $X$ is a quasisphere if and only if $X$ is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on $X$ without much shrinking.
Trace Operators on Regular Trees
2020
Abstract We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.