Search results for "gene-expression"

showing 10 items of 48 documents

Assessing the Contribution of Relative Macrophage Frequencies to Subcutaneous Adipose Tissue

2021

Background: Macrophages play an important role in regulating adipose tissue function, while their frequencies in adipose tissue vary between individuals. Adipose tissue infiltration by high frequencies of macrophages has been linked to changes in adipokine levels and low-grade inflammation, frequently associated with the progression of obesity. The objective of this project was to assess the contribution of relative macrophage frequencies to the overall subcutaneous adipose tissue gene expression using publicly available datasets.Methods: Seven publicly available microarray gene expression datasets from human subcutaneous adipose tissue biopsies (n = 519) were used together with TissueDecod…

0301 basic medicinemedicine.medical_specialtyDOWN-REGULATIONsubcutaneous adipose tissueEndocrinology Diabetes and MetabolismAdipose tissueAdipokine030209 endocrinology & metabolismInflammationBiologycell-type composition03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDownregulation and upregulationINFLAMMATIONInternal medicineGene expressionlipid metabolismmedicinelow-grade inflammationpublicly available dataMacrophagecomputational deconvolutionTX341-641OXIDATIVE STRESSPHOSPHORYLATIONFatty acid synthesisGENE-EXPRESSIONNutritionOriginal ResearchINSULIN-RESISTANCENutrition and DieteticsNutrition. Foods and food supplyWOMENLipid metabolismmacrophages030104 developmental biologyEndocrinologychemistryOBESITYmedicine.symptomSTEM-CELLSFood ScienceACID-METABOLISMFrontiers in Nutrition
researchProduct

Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake.

2016

International audience; Chemical signals play a critical role in interindividual communication, including mother-young relationships. Detecting odor cues released by the mammary area is vital to the newborn's survival. European rabbit females secret a mammary pheromone (MP) in their milk, which releases sucking related orocephalic movements in newborns. Pups spontaneously display these typical movements at birth, independently of any perinatal learning. Our previous Fos mapping study (Charra et al., 2012) performed in 4-day-old rabbits showed that the MP activated a network of brain regions involved in osmoregulation, odor processing and arousal in comparison with a control odor. However, a…

0301 basic medicineLateral hypothalamuspupMammary pheromoneLateral hypothalamusc-FosPheromonesBehavioral Neurosciencepiriform cortexEating0302 clinical medicinePiriform cortexPosterior piriform cortexhypothalamusNeuronsnewborn rabbitbiologyBrainOlfactory PathwaysMilkHypothalamuscircadian-rhythmsRabbitsPsychologyc-fosmedicine.medical_specialtyodor03 medical and health sciencesInternal medicinemedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimalsLearning[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMedian preoptic nucleusOrexinsgene-expressionmedian preoptic nucleusOlfactory bulbOrexin030104 developmental biologyEndocrinologyOdorAnimals Newbornolfactory-bulbOdorantsbiology.proteinOrexin030217 neurology & neurosurgeryBehavioural brain research
researchProduct

Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echin…

2011

SUMMARYWith the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and Echinostoma caproni in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by 2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and screened against sera from hamsters infected with S. haematobium and E. caproni fo…

MaleProteomicsProteome/dk/atira/pure/subjectarea/asjc/2400/2405ProteomicstrematodeimmunologyEXPERIMENTAL-INFECTIONS. bovis0302 clinical medicineCricetinaeEchinostoma/dk/atira/pure/subjectarea/asjc/2700/2725SchistosomiasisParasite hostingElectrophoresis Gel Two-DimensionalChildDIGEGENE-EXPRESSIONGel electrophoresisSchistosoma haematobiumEchinostomiasis0303 health sciencesBiomphalaria/dk/atira/pure/subjectarea/asjc/1100/1103IMMUNE-RESPONSESEchinostosma caproniHelminth ProteinsUp-RegulationPROTEIN DISULFIDE-ISOMERASE3. Good healthPhenotypeInfectious DiseasesProteomeSchistosoma haematobiumSchistosomaEchinostomaResearch ArticleFRIEDI TREMATODABulinus030231 tropical medicineMANSONICross ReactionsBiologyHost-Parasite InteractionsMicrobiologyS. haematobium03 medical and health sciencesproteomicsSpecies SpecificityDIAAnimalsHumansFasciola hepaticaPARASITE030304 developmental biologySchistosomaFASCIOLA-HEPATICAMOLECULAR-CLONINGMesocricetusANCYLOSTOMA-CANINUMbiology.organism_classificationvaccine developmentAntigens HelminthImmunologyAnimal Science and ZoologyParasitologyParasitology
researchProduct

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct

Modulation of brain PUFA content in different experimental models of mice.

2016

International audience; The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to gen…

0301 basic medicineMaleAgingClinical Biochemistryfat-1 miceHippocampuschemistry.chemical_compoundMice0302 clinical medicineCerebellumDocosahexaenoic acid (DHA)fatty-acid-compositionFood science2. Zero hungerchemistry.chemical_classificationCerebral CortexArachidonic Acidanxiety-like behaviordocosahexaenoic acidaccelerated mouse samBiochemistryDocosahexaenoic acidArachidonic acid (AA)Arachidonic acidFemaleFatty acid compositionSAMP8 miceBrain regionsPolyunsaturated fatty acidN-3 PUFAdiet-induced obesityDocosahexaenoic AcidsHypothalamusPrefrontal CortexBiology03 medical and health sciencesrat-brainDietary Fats UnsaturatedGenetic modelAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyN 3 pufaBrain Chemistryage-related-changesFatty acidCell BiologyModels Theoreticalgene-expressiondepressive-like behaviorMice Inbred C57BL030104 developmental biologychemistry030217 neurology & neurosurgeryBrain StemProstaglandins, leukotrienes, and essential fatty acids
researchProduct

Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation

2016

IF 4.258; International audience; Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxr alpha in mice with hepatocytespecific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxr alpha …

0301 basic medicinemedicine.medical_treatmentLipid-metabolismResistanceBiochemistryHepatitisMESH: HepatitisMESH: Endoplasmic Reticulum Stresspolycyclic compoundsInsulinGene-expressionPhospholipidsLiver X ReceptorsMice KnockoutbiologyMESH : Gene Expression RegulationFatty-acid synthesisfood and beveragesEndoplasmic Reticulum StressOrphan Nuclear ReceptorsCultured-cellsLipidsMESH: Gene Expression RegulationMESH : Endoplasmic Reticulum StressMessenger-rnaLiverMESH: Orphan Nuclear ReceptorsGene Knockdown TechniquesLipogenesisFemalelipids (amino acids peptides and proteins)Signal Transductionliver X receptormedicine.medical_specialtyLxr-alphaMice Transgenicdigestive systemPhospholipid transfer proteinGene Expression Regulation Enzymologic03 medical and health sciencesInsulin resistanceMESH : HepatitisLysophosphatidylcholine acyltransferaseInternal medicinemedicineAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyLiver X receptorMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyCrosses GeneticLipogenesisEndoplasmic reticulumInsulinElement-binding protein-1cMESH : LiverCell Biologymedicine.diseaseMESH : Orphan Nuclear ReceptorsReceptor InsulinMice Inbred C57BLInsulin receptor030104 developmental biologyEndocrinologyDiabetes Mellitus Type 2Gene Expression RegulationNuclear receptorbiology.proteinUnfolded protein responseInsulin ResistanceMESH: Liver
researchProduct

EFMviz

2020

Elementary Flux Modes (EFMs) are a tool for constraint-based modeling and metabolic network analysis. However, systematic and automated visualization of EFMs, capable of integrating various data types is still a challenge. In this study, we developed an extension for the widely adopted COBRA Toolbox, EFMviz, for analysis and graphical visualization of EFMs as networks of reactions, metabolites and genes. The analysis workflow offers a platform for EFM visualization to improve EFM interpretability by connecting COBRA toolbox with the network analysis and visualization software Cytoscape. The biological applicability of EFMviz is demonstrated in two use cases on medium (Escherichia coli, iAF1…

0301 basic medicineComputer scienceEndocrinology Diabetes and Metabolismgenome-scale metabolic modelslcsh:QR1-502computer.software_genreBiochemistryData typelcsh:MicrobiologySBML03 medical and health sciences0302 clinical medicineData visualizationGraph drawingProtocolACETATEdata visualizationCELLSBMLCYTOSCAPEMolecular BiologyGENE-EXPRESSIONSoftware visualizationbusiness.industryPATHWAY ANALYSISnetwork visualizationelementary flux modesToolboxVisualization030104 developmental biologyWorkflowDEFINITIONESCHERICHIA-COLIGROWTHData miningbusinesscomputerSET030217 neurology & neurosurgeryMetabolites
researchProduct

The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bact…

2015

ABSTRACT Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni , an efficient expression vector in O…

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/Biotechnology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition030106 microbiologyLactobacillus-plantarumWineEscherichia-coliApplied Microbiology and Biotechnologymolecular characterization03 medical and health sciencesGrowth-phaseBacterial ProteinsMembrane stabilizationHeat shock protein[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Antisense TechnologyGene expression[SDV.IDA]Life Sciences [q-bio]/Food engineeringMalolactic fermentationEnvironmental MicrobiologyRNA AntisenseGene-expressionLactic AcidHeat-Shock ProteinsOenococcusOenococcus oeniLeuconostoc-oenosEcologybiologyEthanolLactococcus lactisMalolactic fermentation[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGene Expression Regulation Bacterialbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyAntisense RNABiochemistryLactococcus-lactisHeat-shock-proteinFermentationOenococcusFood ScienceBiotechnology
researchProduct

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence

2013

'Summary' 26 I. 'Casting for a scenario' 26 II. 'Nominees for a preliminary role' 27 III. 'Nominees for a leading role' 32 IV. 'Future artists' 37   'Acknowledgements' 38   References 38 Summary The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a …

0106 biological sciencesLASER MICRODISSECTIONPhysiologycarbon (C)phosphorus (P)[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesPlant RootsGlomeromycotaMEDICAGO-TRUNCATULA ROOTSRNA interferenceMycorrhizaeLOTUS-JAPONICUSPlastidsMycorrhizaFUNGUS GLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSIONGenetics0303 health sciencesGene knockdownFungal proteinPHOSPHATE TRANSPORTERarbuscular mycorrhizaCADMIUM STRESS ALLEVIATIONfood and beveragesSTRIGOLACTONE BIOSYNTHESISArbuscular mycorrhizaEPIDERMAL-CELLSProtein Transportmembranes[SDE]Environmental SciencesSignal TransductionINTRACELLULAR ACCOMMODATIONHyphaeBiologybiotrophyPhosphatesFungal Proteins03 medical and health sciencesSymbiosisBotanyGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosis030304 developmental biologyfungi15. Life on landbiology.organism_classificationCarbonsilencing010606 plant biology & botany
researchProduct

An initial comparative map of copy number variations in the goat (Capra hircus) genome

2010

Abstract Background The goat (Capra hircus) represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi,…

BreedingGenomePolymerase Chain ReactionSettore AGR/17 - Zootecnica Generale E Miglioramento GeneticoMOUSE STRAINSChromosome regionsCapra hircusGOATCopy-number variationANGORA-GOATSGENE-EXPRESSIONGenetics0303 health sciencesComparative Genomic HybridizationGenomeGoatsChromosome Mapping04 agricultural and veterinary sciencesBovine genomeDatabases Nucleic AcidBiotechnologyResearch Articlelcsh:QH426-470DNA Copy Number VariationsSEGMENTAL DUPLICATIONSlcsh:BiotechnologyMolecular Sequence DataBiologyFluorescenceStructural variationPRODUCTION TRAITSBirds03 medical and health sciencesFAMILY BOVIDAEGene mappinglcsh:TP248.13-248.65Sequence Homology Nucleic AcidGeneticsFINE-SCALEAnimalsHumansFalse Positive Reactions030304 developmental biologyCOPY NUMBER VARIATION0402 animal and dairy scienceReproducibility of Results040201 dairy & animal scienceChromosomes MammalianDNA-SEQUENCESSTRUCTURAL VARIATIONlcsh:GeneticsCANDIDATE LOCIcopy number variation goatsCattleComparative genomic hybridizationBMC Genomics
researchProduct