Search results for "geometry."
showing 10 items of 4386 documents
Adjacency matrices of random digraphs: singularity and anti-concentration
2017
Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …
Modeling Stator Winding Inter-Turn Short Circuit Faults in PMSMs including Cross Effects
2020
Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper presents a detailed analysis of stator winding inter-turn Short Circuit (ITSC) faults, taking the cross effects in the three phases of a permanent magnet synchronous motor (PMSM) into account by considering insulation degradation resistances. A PMSM with series coils in eac…
High-Power Multicarrier Generation for RF Breakdown Testing
2017
Testing of satellite components for high RF power breakdown effects, such as multipactor and corona or passive-intermodulation, is a topic of growing interest in the aerospaceindustry. Switching fromthe classical single carrier approach to the more realisticmulticarrier scenario is very challenging from the experimental point of view. Themulticarrier signals, amplifiedby several RF power amplifiers, need to have controlled phase, amplitude, and frequency in each carrier. Fine tuning of the signal generator phases is required in order to compensate the phase drift occurring in the active elements of the test bed. This paper presents an efficient and low-cost technique to generate multicarrie…
Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel
2019
Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …
Theoretical insights on the importance of anchoring vs molecular geometry in magnetic molecules acting as junctions
2019
The anchoring of the molecule to an electrode is known to be a key factor in single-molecule spintronics experiments. Likewise, a relaxation down to the most stable geometry is a critical step in theoretical simulations of transport through single-molecule junctions. Herein we present a set of calculations designed to analyze and compare the effect of different anchoring points and the effect of perturbations in the molecular geometry and interelectrode distance. As model system we chose the [V($\alpha$-C$_3$S$_5$)$_3$]$^{2-}$ complex connecting two Au(111) electrodes in a slightly compressed geometry. In our calculations, the attachment happens through an S-Au bond, a common anchoring stra…
B-Scan image analysis for position and shape defect definition in plates
2016
Definition of size, shape and location of defects into a mechanical component is of extreme importance in the manufacturing industry in general and particularly in high-tech applications, and in applications that can become dangerous due to the structural failure of mechanical components. In this paper, a laser-UT system has been used to define position and shape of internal defects in aluminum plates. An infrared pulsed laser is used to generate ultrasonic waves in a point of the plate and a CW laser interferometer is used as receiver to acquire the out-of-plane displacements due to the ultrasonic waves in another point of the plate. The method consists of acquiring a B-Scan map on which s…
Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.
2019
Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…
Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique
2018
Abstract Silicon single crystal growth by the Czochralski (CZ) technique is studied numerically using non-stationary mathematical models which allow to predict the evolution of the CZ system in time, including Dash neck, cone and cylindrical growth stages. The focus is on the point defect dynamics, also considering the effect of the thermal stresses. During the cylindrical stage, the crystal pull rate is temporarily reduced as in experiments by Abe et al. The crystal radius and heater power change is explicitly considered in the calculations for crystal diameters of 50, 100 and 200 mm and the agreement with experiments is discussed.
3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process
2019
Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.
Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon
2017
Abstract Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is ~5–11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line (~8%) than the crystal (~2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ri…