Search results for "guest"
showing 10 items of 122 documents
Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells
2015
In recent years, mesoporous silica nanoparticles (MSNs) have been used as effective supports for the development of controlled-release nanodevices that are able to act as multifunctional delivery platforms for the encapsulation of therapeutic agents, enhancing their bioavailability and overcoming common issues such as poor water solubility and poor stability of some drugs. In particular, redox-responsive delivery systems have attracted the attention of scientists because of the intracellular reductive environment related to a high concentration of glutathione (GSH). In this context, we describe herein the development of a GSH-responsive delivery system based on poly(ethylene glycol)- (PEG-)…
Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles.
2013
[EN] A new gated nanodevice design able to control cargo delivery using glucose as a trigger and cyclodextrin-modified glucose oxidase as a capping agent is reported.
Binding of ion pairs and neutral guests by aryl-extended meso‑p-hydroxyphenyl calix[4]pyrrole : The interplay between three binding sites
2023
An aryl-extended calix[4]pyrrole with four meso‑p-hydroxyphenyl substituents was investigated as a host for chloride, acetate, and benzoate anions. Crystal structures of pyridinium and imidazolium chloride complexes were obtained in which chloride ions are hydrogen bonded exo-cavity to the upper rim hydroxyl groups, and the aromatic cations are bound to the shallow cavity of the host. Furthermore, the calix[4]pyrrole formed a hydrogen bonded dimeric capsule templated by inclusion of adiponitrile guest in the endo-cavity binding site. NMR titrations revealed the preference of the OH groups of the host to bind anionic guests in solution. Benzoate anion had the highest binding constant (4 700 …
Redox-Responsive Host–Guest Chemistry of a Flexible Cage with Naphthalene Walls
2020
"Naphthocage", a naphthalene-based organic cage, reveals very strong binding (up to 1010 M-1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C-H···O, C-H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to futur…
Animation attracts: The attraction effect in an on-line shopping environment
2006
Two studies examine the attraction effect - an inconsistent choice behavior typically observed when consumers are presented with two products (target and competitor), both good for different reasons, and a worse "decoy" - in the context of on-line consumer decisions with different product displays (animated or static). The experiments, with different participant populations, show that the attraction effect in an on-line shopping environment depends on the animation format of the products. Experiment 1 (with Italian participants) suggests that the attraction effect is eliminated when target and competitor are both animated and is accentuated when the target is animated and the competitor is …
Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril
2015
Enantiomerically pure cyclohexylhemicucurbit[8]uril (cycHC[8]), possessing a barrel-shaped cavity, has been prepared in high yield on a gram scale from either (R,R,N,N')-cyclohex-1,2-diylurea and formaldehyde or cycHC[6]. In either case, a dynamic covalent library is first generated from which the desired cycHC can be amplified using a suitable anion template.
Size- and Structure-Selective Noncovalent Recognition of Saccharides by Tetraethyl and Tetraphenyl Resorcinarenes in the Gas Phase
2008
The noncovalent complexation of tetraethyl and tetraphenyl resorcinarenes with mono-, di-, and oligosaccharides was studied with negative-polarization electrospray ionization quadrupole ion trap and electrospray ionization Fourier-transform ion cyclotron resonance mass-spectrometric analysis. The saccharides formed 1:1 complexes with deprotonated resorcinarenes, which exhibited clear size and structure selectivity in their complexation. In the case of the monosaccharides, hexoses formed much more abundant and kinetically stable complexes than pentoses or deoxyhexoses. A comparison of the mono-, di-, and oligosaccharides revealed that both the relative abundance and stability of the complexe…
Confinement inside a Crystalline Sponge Induces Pyrrole To Form N−H⋅⋅⋅π Bonded Tetramers
2021
Based on the DFT‐level calculated molecular volume (V mol ) of pyrrole and its liquid density, pyrrole manifests the highest liquid density coefficient LD c (defined as [V mol • density • 0.6023]/FW) value of 0.7. Normal liquids have LD c < 0.63. This very high LD c is due to the strong N‐H … π interactions in solution and hence pyrrole can be considered to be a pseudo‐crystalline liquid. When trapped inside the confined space of the crystalline sponge a reorientation of the N‐H … π interaction is observed leading to specific cyclic N‐H … π tetramers and N‐H … π dimers, verified by single crystal X‐ray crystallographic and computational methods. These tetramers are of the same size as four …
Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles
2011
[EN] Trapped: Mesoporous silica nanoparticles were loaded with a fluorescent guest and functionalized with octadecyltrimethoxysilane. The alkyl chains interact with paraffins, which build a hydrophobic layer around the particle (see picture). Upon melting of the paraffin, the guest molecule is released, as demonstrated in cells for the guest doxorubicin. The release temperature can be tuned by choosing an appropriate paraffin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monoester copillar[5]arenes: synthesis, unusual self-inclusion behavior, and molecular recognition.
2012
The self-inclusion behavior of monoester copillar[5]arenes depends on the position of the ester group, which causes different guest selectivities. Monoester copillar[5]arenes bearing an acetate chain can form stable self-inclusion complexes in low- and high-concentration solution and exhibit high guest selectivity. However, a monoester copillar[5]arene bearing a butyrate chain can not form a self-inclusion complex and exhibits low guest selectivity. Thus, a new class of stable self-inclusion complexes of copillar[5]arenes was explored to improve the selectivity of molecular recognition.