Search results for "homotopy"

showing 10 items of 50 documents

Stable Images and Discriminants

2020

We show that the discriminant/image of a stable perturbation of a germ of finite \(\mathcal {A}\)-codimension is a hypersurface with the homotopy type of a wedge of spheres in middle dimension, provided the target dimension does not exceed the source dimension by more than one. The number of spheres in the wedge is called the discriminant Milnor number/image Milnor number. We prove a lemma showing how to calculate this number, and show that when the target dimension does not exceed the source dimension, the discriminant Milnor number and the \(\mathcal {A}\)-codimension obey the “Milnor–Tjurina relation” familiar in the case of isolated hypersurface singularities. This relation remains conj…

Pure mathematicsMathematics::Algebraic GeometryHypersurfaceDiscriminantHomotopyPerturbation (astronomy)SPHERESGravitational singularityMathematics::Algebraic TopologyWedge (geometry)MathematicsMilnor number
researchProduct

Multiple Solutions with Sign Information for a Class of Coercive (p, 2)-Equations

2019

We consider a nonlinear Dirichlet equation driven by the sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation). The hypotheses on the reaction f(z, x) are minimal and make the energy (Euler) functional of the problem coercive. We prove two multiplicity theorems producing three and four nontrivial smooth solutions, respectively, all with sign information. We apply our multiplicity results to the particular case of a class of parametric (p, 2)-equations.

Pure mathematicsClass (set theory)Constant sign solutionGeneral MathematicsNodal solutions010102 general mathematicsMultiplicity (mathematics)01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeNonlinear systemSettore MAT/05 - Analisi MatematicaEuler's formulasymbolsHomotopy0101 mathematicsLaplace operator(p 2)-differential operatorCritical groupSign (mathematics)Parametric statisticsMathematicsBulletin of the Malaysian Mathematical Sciences Society
researchProduct

Voisinages tubulaires épointés et homotopie stable à l'infini

2022

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…

links of singularities[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theorypunctured tubular neighborhoods[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]stable homotopy at infinityMathematics::Algebraic TopologyMathematics - Algebraic Geometrylinks of singularities.Mathematics::Algebraic Geometryquadratic invariantsMathematics::K-Theory and HomologyFOS: MathematicsAlgebraic Topology (math.AT)14F42 19E15 55P42 14F45 55P57Mathematics - Algebraic TopologyAlgebraic Geometry (math.AG)qua- dratic invariants
researchProduct

On some aspects of Borel-Moore homology in motivic homotopy : weight and Quillen’s G-theory

2016

The theme of this thesis is different aspects of Borel-Moore theory in the world of motives. Classically, over the field of complex numbers, Borel-Moore homology, also called “homology with compact support”, has some properties quite different from singular homology. In this thesis we study some generalizations and applications of this theory in triangulated categories of motives.The thesis is composed of two parts. In the first part we define Borel-Moore motivic homology in the triangulated categories of mixed motives defined by Cisinski and Déglise and study its various functorial properties, especially a functoriality similar to the refined Gysin morphism defined by Fulton. These results…

Quillen’s K-theory and G-theoryStructure de poidsMixed motives[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theoryHomologie de Borel-MooreThéorie de l’homotopie motiviqueMotifs de ChowChow motives[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT]G-théorieFormalisme des six foncteursWeight structureSix functors formalismMotifs mixtesRefined Gysin morphismBorel-Moore homologyMorphisme de Gysin raffinéK-théorie de Quillen
researchProduct

Hom-Lie quadratic and Pinczon Algebras

2017

ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.

[ MATH ] Mathematics [math]Universal enveloping algebra01 natural sciencesCohomologyFiltered algebraQuadratic algebraMathematics::Category Theory0103 physical sciences[MATH]Mathematics [math]0101 mathematicsMSC: 17A45 17B56 17D99 55N20ComputingMilieux_MISCELLANEOUSMathematicsSymmetric algebraAlgebra and Number TheoryQuadratic algebrasMathematics::Rings and Algebras010102 general mathematicsUp to homotopy algebras16. Peace & justiceLie conformal algebraHom-Lie algebrasAlgebraDivision algebraAlgebra representationPhysics::Accelerator PhysicsCellular algebra010307 mathematical physics
researchProduct

A note on conjugation involutions on homotopy complex projective spaces

1986

Algebran-connectedPure mathematicsHomotopy categoryGeneral MathematicsComplex projective spaceWhitehead theoremProjective spaceCofibrationQuaternionic projective spaceRegular homotopyMathematicsJapanese journal of mathematics. New series
researchProduct

A fuzzification of the category of M-valued L-topological spaces

2004

[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.

Pure mathematicsFunctorHomotopy categoryDiagram (category theory)Mathematics::General Mathematicslcsh:Mathematicslcsh:QA299.6-433lcsh:Analysislcsh:QA1-939GL-monoid(LM)-fuzzy topologyPower-set operators(LM)-interior operatorMathematics::Category TheoryCategory of topological spacesBiproductUniversal propertyGeometry and TopologyM-valued L-topologyCategory of setsL-fuzzy category(LM)-neighborhood systemMathematicsInitial and terminal objectsApplied General Topology
researchProduct

Categorical action of the extended braid group of affine type $A$

2017

Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.

[ MATH ] Mathematics [math]Pure mathematicsGeneral MathematicsCategorificationBraid groupGeometric intersection01 natural sciencesMathematics - Geometric TopologyMorphismMathematics::Category TheoryQuiverMathematics - Quantum Algebra0103 physical sciencesFOS: MathematicsQuantum Algebra (math.QA)Representation Theory (math.RT)0101 mathematics[MATH]Mathematics [math]MathematicsHomotopy categoryGroup (mathematics)Applied Mathematics010102 general mathematicsQuiverBraid groupsGeometric Topology (math.GT)16. Peace & justiceCategorificationCategorical actionBounded functionMSC: 20F36 18E30 57M99 13D99010307 mathematical physicsAffine transformationMathematics - Representation Theory
researchProduct

Topology guaranteeing manifold reconstruction using distance function to noisy data

2006

Given a smooth compact codimension one submanifold S of Rk and a compact approximation K of S, we prove that it is possible to reconstruct S and to approximate the medial axis of S with topological guarantees using unions of balls centered on K. We consider two notions of noisy-approximation that generalize sampling conditions introduced by Amenta & al. and Dey & al. Our results are based upon critical point theory for distance functions. For the two approximation conditions, we prove that the connected components of the boundary of unions of balls centered on K are isotopic to S. Our results allow to consider balls of different radii. For the first approximation condition, we also prove th…

Connected componentCombinatoricsCritical point (set theory)Medial axisHomotopyBoundary (topology)CodimensionSubmanifoldTopologyManifoldMathematicsProceedings of the twenty-second annual symposium on Computational geometry
researchProduct

Introduction to Homotopy Theory

2001

Consider two manifolds X and Y together with a set of continuous maps f, g,... $$ f:X \to Y,x \to f(x) = y;x \in X,y \in Y. $$

CombinatoricsPhysicsHomotopy groupn-connectedHomotopy sphereEilenberg–MacLane spaceWhitehead torsionWhitehead theoremCofibrationRegular homotopy
researchProduct