Search results for "hydrogel"

showing 10 items of 373 documents

Hybrid GMP–polyamine hydrogels as new biocompatible materials for drug encapsulation

2020

Here we present the preparation and characterization of new biocompatible materials for drug encapsulation. These new gels are based on positively charged [1+1] 1H-pyrazole-based azamacrocycles which minimise the electrostatic repulsions between the negatively charged GMP molecules. Rheological measurements confirm the electroneutral hydrogel structure as the most stable for all the GMP-polyamine systems. Nuclear magnetic resonance (NMR) was employed to investigate the kinetics of the hydrogel formation and cryo-scanning electron microscopy (cryo-SEM) was used to obtain information about the hydrogel morphology, which exhibited a non-homogeneous structure with a high degree of cross-linking…

010405 organic chemistryKineticstechnology industry and agricultureBiocompatible MaterialsHydrogelsmacromolecular substancesGeneral Chemistry010402 general chemistryCondensed Matter PhysicsBiocompatible materialcomplex mixtures01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringSelf-healing hydrogelsMicroscopy Electron ScanningPolyaminesMoleculeDrug encapsulationRheologyPolyamineSoft Matter
researchProduct

Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering

2020

As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…

0106 biological sciences3D bioprintingMaterials scienceTissue EngineeringTissue Scaffolds010401 analytical chemistryBioprintingHydrogelsNanotechnologyGeneral MedicineHard tissue01 natural sciencesApplied Microbiology and BiotechnologyCartilage tissue engineeringBone tissue engineering0104 chemical scienceslaw.inventionCartilageBody organslaw010608 biotechnologyPrinting Three-DimensionalSelf-healing hydrogelsMolecular MedicineCellular MorphologyBiotechnology Journal
researchProduct

Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks

2018

Abstract Background Consumption of protein-based food products has a key role in the improvement of human health. The crosslinking agent microbial transglutaminase (mTGase) is an effective and promising tool to modify animal proteins used in the food industry. Improvement in the gelation process, physicochemical and textural quality, and consumer's demand of protein-based food products could be attained by combining mTGase and some non-conventional food processing technologies. Scope and approach New perspectives and key areas for future research in the development of high-quality food proteins and protein-based products as a function of interaction effect of mTGase and some new processing …

0106 biological sciencesFood industrybiologybusiness.industryTissue transglutaminaseChemistrySonication04 agricultural and veterinary sciences040401 food science01 natural sciencesPascalization0404 agricultural biotechnology010608 biotechnologyFood productsSelf-healing hydrogelsFood processingbiology.proteinFood sciencebusinessMicrobial transglutaminaseFood ScienceBiotechnologyTrends in Food Science & Technology
researchProduct

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

A Natural Xenogeneic Endometrial Extracellular Matrix Hydrogel Toward Improving Current Human in vitro Models and Future in vivo Applications

2021

Decellularization techniques support the creation of biocompatible extracellular matrix hydrogels, providing tissue-specific environments for both in vitro cell culture and in vivo tissue regeneration. We obtained endometrium derived from porcine decellularized uteri to create endometrial extracellular matrix (EndoECM) hydrogels. After decellularization and detergent removal, we investigated the physicochemical features of the EndoECM, including gelation kinetics, ultrastructure, and proteomic profile. The matrisome showed conservation of structural and tissue-specific components with low amounts of immunoreactive molecules. EndoECM supported in vitro culture of human endometrial cells in t…

0301 basic medicine3D cultureHistologyStromal celllcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologyExtracellular matrix03 medical and health sciencesTissue engineeringIn vivolcsh:TP248.13-248.65endometriumOriginal ResearchMatrigelDecellularizationextracellular matrix hydrogelsChemistryBioengineering and Biotechnology021001 nanoscience & nanotechnologyCell biology030104 developmental biologytissue engineeringSelf-healing hydrogelsdecellularizationStem cell0210 nano-technologyBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Bifunctional poly(acrylamide) hydrogels through orthogonal coupling chemistries

2019

Biomaterials for cell culture allowing simple and quantitative presentation of instructive cues enable rationalization of the interplay between cells and their surrounding microenvironment. Poly(acrylamide) (PAAm) hydrogels are popular 2D-model substrates for this purpose. However, quantitative and reproducible biofunctionalization of PAAm hydrogels with multiple ligands in a trustable, controlled, and independent fashion is not trivial. Here, we describe a method for bifunctional modification of PAAm hydrogels with thiol- and amine- containing biomolecules with controlled densities in an independent, orthogonal manner. We developed copolymer networks of AAm with 9% acrylic acid and 2% N-(4…

0301 basic medicine570Polymers and PlasticsPolymersOtras Ciencias BiológicasPoly(acrylamide)Acrylic ResinsBiocompatible MaterialsBioengineeringINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología IndustrialCiencias BiológicasBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundUltraviolet visible spectroscopyPolymer chemistryMaterials ChemistryCopolymerAnimalsPolylysineBifunctionalCells CulturedAcrylic acidNeuronschemistry.chemical_classificationOtras Ciencias QuímicasBiomoleculeCiencias QuímicasHydrogels021001 nanoscience & nanotechnologyMice Inbred C57BL030104 developmental biologychemistryChemical engineeringAcrylamideSelf-healing hydrogelsAmine gas treatingLaminin0210 nano-technologyCIENCIAS NATURALES Y EXACTAS
researchProduct

Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications

2020

Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous chondrocyte transplants represent an effective strategy for cell regeneration

0301 basic medicineAquatic OrganismsScyphozoaCytoskeleton organizationchondrocytes02 engineering and technologychondrocytes differentiationGelatinRegenerative medicinelcsh:ChemistryMiceTissue engineeringcartilagelcsh:QH301-705.5CytoskeletonSpectroscopyGlycosaminoglycansChemistryCell DifferentiationHydrogelsdifferentiationGeneral Medicine021001 nanoscience & nanotechnologyComputer Science ApplicationsCell biologymedicine.anatomical_structurejellyfish collagenenzymatic cross-linkingchondrocyteCollagen0210 nano-technologyfood.ingredientCell Survivalregenerative medicineArticleCatalysisChondrocyteCell LineInjectionsInorganic Chemistry03 medical and health sciencesfoodmedicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyTissue EngineeringRegeneration (biology)CartilageOrganic ChemistryChondrogenesisRats030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999gene expressionCattlecomposite injectable hydrogelInternational Journal of Molecular Sciences
researchProduct

Injectable Bone Substitute Based on β-TCP Combined With a Hyaluronan-Containing Hydrogel Contributes to Regeneration of a Critical Bone Size Defect T…

2015

In the present in vivo study, the regenerative potential of a new injectable bone substitute (IBS) composed of beta-tricalcium phosphate (β-TCP) and hyaluronan was tested in a rabbit distal femoral condyle model. To achieve this, 2 defects of 6 mm in diameter and 10 mm in length were drilled into each femur condyle in a total of 12 animals. For each animal, 1 hole was filled with the substitute material, and the other was left empty to serve as the control. After 1, 3, and 6 months, the regenerative process was analyzed by radiography as well as by histological and histomorphometrical analysis. The results revealed that bone tissue formation took place through osteoconductive processes over…

0301 basic medicineCalcium PhosphatesBone RegenerationDentistry02 engineering and technologyBone tissue03 medical and health sciencesIn vivoInjectable bonemedicineAnimalsBone formationHyaluronic AcidBone regenerationChemistrybusiness.industryRegeneration (biology)HydrogelsFemur condyle021001 nanoscience & nanotechnologyRegenerative process030104 developmental biologymedicine.anatomical_structureBone SubstitutesRabbitsOral Surgery0210 nano-technologybusinessThe Journal of oral implantology
researchProduct

Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis

2017

Summary Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively. While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adh…

0301 basic medicineCellular differentiationHYDROGELSCELL DIFFERENTIATION02 engineering and technologyBiochemistry//purl.org/becyt/ford/1 [https]MiceNeural Stem CellsIKVAVlcsh:QH301-705.5Cells Culturedlcsh:R5-920β(1)-integrinNeurogenesisHydrogelsMouse Embryonic Stem Cells021001 nanoscience & nanotechnologyNeural stem cellCell biologyStem celllcsh:Medicine (General)0210 nano-technologyCIENCIAS NATURALES Y EXACTASbiomaterialsPOLYLYSINENeurogenesisBiologyNEUROGENESISCiencias BiológicasFocal adhesion03 medical and health sciencesBiología Celular MicrobiologíalamininReportGeneticsΒ1-INTEGRINAnimalsProgenitor cell//purl.org/becyt/ford/1.6 [https]BIOMATERIALSCell adhesionFocal AdhesionsbioengineeringTissue Engineeringβ1-integrinCell BiologypolylysineNEURAL STEM CELLSMolecular biologyEmbryonic stem cellElasticityPeptide FragmentsBIOENGINEERINGLAMININMice Inbred C57BLcell differentiation030104 developmental biologylcsh:Biology (General)Developmental BiologyStem Cell Reports
researchProduct

Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix

2016

Objective: This study was designed to evaluate the antibacterial activity of a wound dressing which combines polyacrylate fibres and a silver lipido-colloid matrix (UrgoClean Ag, silver polyabsorbent dressing), against biofilm of methicillin-resistant Staphylococcus aureus (MRSA). Method: Samples of silver polyabsorbent dressing and the neutral form of this dressing (UrgoClean) were applied to biofilms of MRSA formed on a collagen I-coated surface, cultured for 24 hours. Different exposure times were tested (1, 2, 4 and 7 days) without dressing change. The biofilm reduction was quantified by using culture methods and by confocal laser scanning microscopy experiments. Results: The applicatio…

0301 basic medicineColonizationNursing (miscellaneous)ResistanceMechanical effectMRSAmedicine.disease_causeDressing changeMatrix (chemical analysis)030207 dermatology & venereal diseases0302 clinical medicine[SDV.IDA]Life Sciences [q-bio]/Food engineeringContaining wound dressingseducation.field_of_studyBiofilm[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringSilver CompoundsHydrogelsAnti-Bacterial AgentsStaphylococcus aureusSilver-containing wound dressingPseudomonas aeruginosaPolyacrylate fibresAntibacterial activityMethicillin-Resistant Staphylococcus aureus030106 microbiologyPopulationStaphylococcus-aureus biofilmBurnMicrobiology03 medical and health sciencesmedicineConfocal laser scanning microscopyHumansPseudomonas-aeruginosa biofilmeducationWound HealingBacteriaPseudomonas aeruginosabusiness.industryIn-vitro modelHuman keratinocytesBiofilmbiochemical phenomena metabolism and nutritionBandagesBiofilmsWound InfectionAntimicrobial efficacyFundamentals and skillsAntibacterial activitybusinessNuclear chemistry
researchProduct