Search results for "hyperfine structure"
showing 10 items of 423 documents
Hyperfine mixing in b -> c semileptonic decay of doubly heavy baryons
2010
We qualitatively corroborate the results of [W. Roberts, M. Pervin, Int. J. Mod. Phys. A 24 (2009) 2401] according to which hyperfine mixing greatly affects the decay widths of b -> c semileptonic decays involving doubly heavy bc baryons. However, our predictions for the decay widths of the unmixed states differ from those reported in the work of Roberts and Pervin by a factor of 2, and this discrepancy translates to the mixed case. We further show that the predictions of heavy quark spin symmetry, might be used in the future to experimentally extract information on the admixtures in the actual physical bc baryons, in a model independent manner.
Magnetic octupole moment of Yb-173 using collinear laser spectroscopy
2021
The hyperfine constants of the $4{f}^{14}6s6p^{3}P_{2}^{o}$ state in neutral Yb have been measured using three different dipole transitions. This state was recently shown to have a comparatively large hyperfine magnetic octupole splitting, and thus a puzzlingly large magnetic octupole moment. The measurement is performed using collinear laser spectroscopy on a fast atomic beam, which provides a straightforward route to probing long-lived metastable atomic states with high resolution. From the combined analysis of all three lines we find no significant evidence for a nonzero octupole moment in $^{173}\mathrm{Yb}$.
Tl-related radiation defects in CsI:Tl
2004
Abstract Angular dependencies of the EPR spectra detected via the magnetic circular dichroism of the optical absorption (MCDA-EPR) observed in the MCDA bands at 355, 411, 425, 442, 465, 536, and 815 nm of γ- or X-irradiated CsI:Tl crystals have been investigated. The MCDA-EPR spectrum at B || [1 0 0] consists of two quartets of intense lines. The spectrum could be satisfactorily explained taking into account hyperfine (hf) interactions of unpaired electron with S= 1 2 with three Tl nuclei I ( 205 Tl , 203 Tl )= 1 2 . Therefore we propose as a model a Tl-trimer centre. The hf interactions along a [1 0 0] direction with two equivalent Tl and one single Tl were observed. As a centre model we p…
Variability of the Si-O-Si angle in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy
2009
We report an experimental investigation by electron paramagnetic resonance (EPR) and Raman spectroscopy on a variety of amorphous silicon dioxide materials. Our study by EPR have permitted us to point out that the splitting of the primary hyperfine doublet of the Eγ′ center shows a relevant sample-to-sample variability, changing from ∼41.8 to ∼42.6 mT in the set of materials we considered. The parallel study by Raman spectroscopy has enabled us to state that this variability is attributable to the different Si-O-Si angle characterizing the matrices of the different materials. © 2009 Elsevier B.V. All rights reserved.
Structural properties of the range-II- and range-III order in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy
2010
In the present work we report an experimental investigation by electron paramagnetic resonance spectroscopy on the hyperfine structure of the E. point defect, probing the local arrangement of the network (range-II order), and by Raman spectroscopy on the D 1 and D 2 lines, probing mean features of the network (range-III order). Our studies, performed on a-SiO 2 samples thermally treated at 1000 °C in air for different time durations, show that changes of the hyperfine structure and of the D 1 and D 2 lines occur in a correlated way. These results give strong evidence that the range-II and range-III order properties are intimately related to each other and that these properties are determine…
Structural modifications induced by electron irradiation in SiO2 glass: Local densification measurements
2009
We report a study on the structural modifications induced in amorphous silicon dioxide (a-SiO2) by electron irradiation in the dose range from 1.2?103 to 5?106?kGy. This study has been performed by investigating the properties of the 29Si hyperfine structure of the E '? center by electron paramagnetic resonance (EPR) spectroscopy. Our data suggest that the structural modifications induced by irradiation take place through the nucleation of confined high-defective and densified regions statistically dispersed into the whole volume of the material. In addition, we have estimated that in the high dose limit (D?105?kGy) the degree of densification associated to the local (within the defective r…
Creation of paramagnetic defects by gamma irradiation in amorphous silica
2000
An electron spin resonance (ESR) study of the defects induced by γ-rays in various types of natural and synthetic silica is reported. Three main structures were identified: the E′ center and two doublets with field splitting of 7.4 and 11.8 mT, respectively, both centered around the E′ center signal. Another structure partially overlapping the E′ center line was also detected, consisting in three peaks with a maximum field splitting of 1.36 mT. We have investigated the growth kinetics of these centers on increasing the y-ray accumulated dose. In all investigated materials the growth of E′ centers can be interpreted as caused by γ-activated conversion of one or more precursors. The 1.36 mT s…
Dichroic atomic vapor laser lock with multi-gigahertz stabilization range
2016
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the $^{85}$Rb ground state…
Radiative Improvement of the Lattice Nonrelativistic QCD Action Using the Background Field Method and Application to the Hyperfine Splitting of Quark…
2011
We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the $\mathbit{\ensuremath{\sigma}}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbit{B}$ term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.
High-resolution laser system for the S3-Low Energy Branch
2022
International audience; In this paper we present the first high-resolution laser spectroscopy results obtained at the GISELE laser laboratory of the GANIL-SPIRAL2 facility, in preparation for the first experiments with the S$^3$-Low Energy Branch. Studies of neutron-deficient radioactive isotopes of erbium and tin represent the first physics cases to be studied at S$^3$. The measured isotope-shift and hyperfine structure data are presented for stable isotopes of these elements. The erbium isotopes were studied using the $4f^{12}6s^2$$^3H_6 \rightarrow 4f^{12}(^3 H)6s6p$$J = 5$ atomic transition (415 nm) and the tin isotopes were studied by the $5s^25p^2 (^3P_0) \rightarrow 5s^25p6s (^3P_1)$…