Search results for "hyperfine structure"

showing 10 items of 423 documents

Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian.

2011

We report an analytical scheme for the calculation of first-order electrical properties using the spin-free Dirac-Coulomb (SFDC) Hamiltonian, thereby exploiting the well-developed density-matrix formulations in nonrelativistic coupled-cluster (CC) derivative theory. Orbital relaxation effects are fully accounted for by including the relaxation of the correlated orbitals with respect to orbitals of all types, viz., frozen-core, occupied, virtual, and negative energy state orbitals. To demonstrate the applicability of the presented scheme, we report benchmark calculations for first-order electrical properties of the hydrogen halides, HX with X = F, Cl, Br, I, At, and a first application to th…

HydrogenChemistryGeneral Physics and Astronomychemistry.chemical_elementFirst ordersymbols.namesakeAtomic orbitalRelaxation effectsymbolsCoulombNegative energyPhysical and Theoretical ChemistryAtomic physicsHamiltonian (quantum mechanics)Hyperfine structureThe Journal of chemical physics
researchProduct

Deuterium hyperfine splittings in the rotational spectrum of NH2D as revealed by Lamb-dip spectroscopy

2020

Abstract In the context of radio-astronomical observations, laboratory experiments constitute a cornerstone in the interpretation of rich line surveys due to the concomitant presence of numerous emitting molecules. Here, we report the investigation of three different rotational transitions of mono-deuterated ammonia (NH2D), a species of astrophysical interest, for which the contribution of the deuterium nuclear spin to the rotational spectrum has been resolved for the first time in the millimeter- and submillimeter-wave domain. The effect of hyperfine interactions on the rotational spectrum has been unveiled by a combined theoretical and experimental approach. Quantum-chemical calculations …

HydrogenQuantum-chemical calculationschemistry.chemical_elementContext (language use)010402 general chemistry01 natural sciencesSpectral lineDeuterium fractionationAmmoniaInterstellar medium0103 physical sciencesPhysical and Theoretical ChemistrySpectroscopyHyperfine structureSpectroscopyAstrophysics::Galaxy AstrophysicsLine (formation)Physics010304 chemical physicsSpectrometerAtomic and Molecular Physics and Optics0104 chemical sciencesDeuteriumchemistryHyperfine structureAtomic physicsLamb-dip technique
researchProduct

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

2018

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

IN-BEAMNuclear TheoryGeneral Physics and Astronomychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DROPLET-MODEL01 natural sciencesEffective nuclear chargeNO-2540103 physical sciencesNeutronSUPERHEAVY ELEMENTS010306 general physicsSpectroscopyMASSESNuclear ExperimentHyperfine structurePhysicsMagnetic momentNUCLEI010308 nuclear & particles physicsPRODUCTSchemistryQuadrupoleUPDATENobeliumAtomic physicsSHIPNuclear density
researchProduct

Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth

2018

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…

IONSGeneral PhysicsAtomic Physics (physics.atom-ph)0205 Optical PhysicsFOS: Physical scienceschemistry.chemical_elementg-factorsElectronPhysics Atomic Molecular & ChemicalHYPERFINE01 natural sciencesPhysics - Atomic PhysicsIonBismuth0103 physical sciences0307 Theoretical and Computational ChemistryPhysics::Atomic Physicshyperfine transitions010306 general physicsHyperfine structurePrecision tests of QEDPhysicsScience & Technology010308 nuclear & particles physicsPhysicsOpticsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsMagnetic fieldchemistryPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicslifetimesAtomic physicsGround statehighly charged ionsExcitationJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

2017

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

IONSRINGGeneral PhysicsHydrogenProtonhyperfine structure0205 Optical Physics0307 Theoretical And Computational Chemistrychemistry.chemical_elementBEAMPhysics Atomic Molecular & ChemicalPROTON01 natural sciencesIonBismuthGSI0202 Atomic Molecular Nuclear Particle And Plasma Physicsrelativistic and QED effects in ions0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment010306 general physicsSpectroscopyHyperfine structureESRPhysicsScience & Technology010308 nuclear & particles physicsPhysicsOpticsHYDROGENCondensed Matter PhysicsAtomic and Molecular Physics and OpticschemistryPhysical Scienceslaser spectroscopyLithiumAtomic physicsTRANSITIONSTORAGEJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2: Ground and v4 = 1 States

2011

A combined microwave, infrared, and computational investigation of CHBrF(2) is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for CH(79)BrF(2) and CH(81)BrF(2) provided rotational and centrifugal-distortion constants up to the sextic terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the…

InfraredChemistryAnalytical chemistryCHBrF2Context (language use)rotational spectroscopyhgh-resolution infrared spectroscopyRotational spectroscopyPhysical and Theoretical ChemistryPerturbation theoryAtomic physicsGround stateRelativistic quantum chemistryQUANTUM-CHEMICAL CALCULATIONSHyperfine structureMicrowave
researchProduct

Towards Molecular Conductors with a Spin‐Crossover Phenomenon:Crystal Structures, Magnetic Properties and Mössbauer Spectra of[Fe(salten)Mepepy][M(dm…

2005

Three new iron(III) compounds of formula [Fe(salten)Mepepy][M(dmit)2]·CH3CN (M = Ni, Pd, Pt; H2salten = 4-azaheptamethylene-1,7-bis(salicylideneiminate); Mepepy = 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl) ethane; dmit2– = 1,3-dithiole-2-thione-4,5-dithiolato) have been synthesised and the crystal structure of each compound has been solved at different temperatures. The structures consist of alternating layers of [M(dmit)2]– units and [Fe(salten)Mepepy] cations. In the Ni compound photo-isomerisation of the Mepepy ligand can be observed in dichloromethane solution. The temperature dependence of the magnetic susceptibility of the compounds reveals a gradual S = 5/2 blabla S = 1/2 spin crossove…

Inorganic ChemistryCrystallographyNuclear magnetic resonanceOxidation stateChemistrySpin crossoverMössbauer spectroscopyX-ray crystallographyAntiferromagnetismCrystal structureMagnetic susceptibilityHyperfine structureEuropean Journal of Inorganic Chemistry
researchProduct

Fifty Years of Mössbauer Spectroscopy in Solid State Research - Remarkable Achievements, Future Perspectives

2011

Mossbauer spectroscopy was founded more than fifty years ago based on an outstanding discovery by the young German physicist Rudolf Ludwig Mossbauer while working on his Ph.D. thesis. He discovered the recoilless nuclear resonance fluorescence of gamma radiation and was awarded the Nobel Prize in Physics in 1961 as one of the youngest recipients of this most prestigious award. His discovery led to the development of a new technique for measurements of hyperfine interactions between nuclear moments and electromagnetic fields. This method, with highest sharpness of tuning of 10–13, yields information on valence state, symmetry, magnetic behavior, phase transition, lattice dynamics and other s…

Inorganic ChemistryNuclear physicsPhysicsLattice dynamicsPhysics::Popular PhysicsNuclear magnetic resonanceMössbauer effectMössbauer spectroscopySolid-stateNuclear resonance fluorescenceGerman physicistHyperfine structurePhysics::History of PhysicsZeitschrift für anorganische und allgemeine Chemie
researchProduct

CRIS: A new method in isomeric beam production

2013

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

Ion beamRadioactive decay spectroscopyPhysicsQC1-999chemistry.chemical_elementIon beam purificationFranciumSemiconductor detectorIsotope shiftchemistryIonizationPhysics::Atomic and Molecular ClustersPhysics::Accelerator PhysicsNeutronHyperfine structurePhysics::Atomic PhysicsAtomic physicsLaser spectroscopySpectroscopyNuclear ExperimentBeam (structure)Radioactive decay
researchProduct

Lambda-doublet specificity in the low-temperature capture of NO(X Π21/2) in low rotational states by C+ ions

2009

Following our general approach to Lambda-doubling specificity in the capture of dipolar molecules by ions [M. Auzinsh et al., J. Chem. Phys. 128, 184304 (2008)], we calculate the rate coefficients for the title process in the temperature range 10(-4)<T<10(2) K. Three regimes considered are as follows: (i) nonadiabatic capture in the regime of high-field Stark effect with respect to the Lambda-doubling components, (10(-1)<T<10(2) K), (ii) adiabatic capture in the regime of intermediate Stark effect (10(-3)<T<10(-1) K), and (iii) adiabatic capture in the limit of very low temperatures (T<<10(-3) K) in the regime of quadratic Stark effect with respect to the Lambda-doubling and hyperfine compo…

IonsRotationElectron captureChemistryGeneral Physics and AstronomyAtmospheric temperature rangeNitric OxideLambdaCarbonIonCold TemperatureKineticsDipolesymbols.namesakeStark effectsymbolsPhysical and Theoretical ChemistryAtomic physicsAdiabatic processHyperfine structureThe Journal of Chemical Physics
researchProduct